Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition

被引:76
作者
Zhang, Zheng [1 ]
Yang, Xiu [2 ]
Oseledets, Ivan V. [3 ]
Karniadakis, George E. [2 ]
Daniel, Luca [1 ]
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Skolkovo Inst Sci & Technol, Skolkovo 143025, Russia
基金
俄罗斯科学基金会;
关键词
Analysis of variance (ANOVA); circuit simulation; generalized polynomial chaos (gPC); hierarchical uncertainty quantification; high dimensionality; microelectromechanical systems (MEMS) simulation; stochastic modeling and simulation; tensor train; uncertainty quantification; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; POLYNOMIAL-CHAOS; INTEGRATED-CIRCUITS; MONTE-CARLO; APPROXIMATION;
D O I
10.1109/TCAD.2014.2369505
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Hierarchical uncertainty quantification can reduce the computational cost of stochastic circuit simulation by employing spectral methods at different levels. This paper presents an efficient framework to simulate hierarchically some challenging stochastic circuits/systems that include high-dimensional subsystems. Due to the high parameter dimensionality, it is challenging to both extract surrogate models at the low level of the design hierarchy and to handle them in the high-level simulation. In this paper, we develop an efficient analysis of variance-based stochastic circuit/microelectromechanical systems simulator to efficiently extract the surrogate models at the low level. In order to avoid the curse of dimensionality, we employ tensor-train decomposition at the high level to construct the basis functions and Gauss quadrature points. As a demonstration, we verify our algorithm on a stochastic oscillator with four MEMS capacitors and 184 random parameters. This challenging example is efficiently simulated by our simulator at the cost of only 10 min in MATLAB on a regular personal computer.
引用
收藏
页码:63 / 76
页数:14
相关论文
共 74 条
  • [1] Stochastic Analysis of Electrostatic MEMS Subjected to Parameter Variations
    Agarwal, Nitin
    Aluru, Narayana R.
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2009, 18 (06) : 1454 - 1468
  • [2] A MATHEMATICAL AND COMPUTATIONAL FRAMEWORK FOR MULTIFIDELITY DESIGN AND ANALYSIS WITH COMPUTER MODELS
    Allaire, Douglas
    Willcox, Karen
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2014, 4 (01) : 1 - 20
  • [3] Anandkumar A, 2014, J MACH LEARN RES, V15, P2773
  • [4] [Anonymous], 2014, MEMS US MAN
  • [5] [Anonymous], 2014, ARXIV14062816
  • [6] A stochastic collocation method for elliptic partial differential equations with random input data
    Babuska, Ivo
    Nobile, Fabio
    Tempone, Raul
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) : 1005 - 1034
  • [7] Bigoni D., 2014, ARXIV14055713
  • [8] Variation
    Boning, Duane S.
    Balakrishnan, Karthik
    Cai, Hong
    Drego, Nigel
    Farahanchi, Ali
    Gettings, Karen M.
    Lim, Daihyun
    Somani, Ajay
    Taylor, Hayden
    Truque, Daniel
    Xie, Xiaolin
    [J]. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2008, 21 (01) : 63 - 71
  • [9] ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION
    CARROLL, JD
    CHANG, JJ
    [J]. PSYCHOMETRIKA, 1970, 35 (03) : 283 - &
  • [10] Cichoki A., 2014, ARXIV14032048