On the Diophantine equation x2 + bm = cn with a2 + b4 = c2

被引:0
作者
Terai, Nobuhiro [1 ]
机构
[1] Oita Univ, Fac Sci & Technol, Dept Integrated Sci & Technol, Div Math Sci, 700 Dannoharu, Oita 8701192, Japan
关键词
Diophantine equation; Integer solution; Pythagorean numbers;
D O I
10.1007/s13226-021-00162-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a, b, c be pairwise relatively prime positive integers such that a(2) + b(4) = c(2) and b is odd. Then we show that the equation of the title has only one positive integer solution (x, m, n) = (a, 4, 2) under some conditions.
引用
收藏
页码:162 / 169
页数:8
相关论文
共 19 条
  • [1] Bosma W., HDB MAGMA FUNCTIONS
  • [2] On the diophantine equation x 2+2 a • 3 b • 11 c = y n
    Cangul, Ismail Naci
    Demirci, Musa
    Inam, Ilker
    Luca, Florian
    Soydan, Gokhan
    [J]. MATHEMATICA SLOVACA, 2013, 63 (03) : 647 - 659
  • [3] Cao ZF, 1999, ACTA ARITH, V91, P85
  • [4] On Terai's conjecture
    Cao, ZF
    Dong, SL
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1998, 74 (08) : 127 - 129
  • [5] Galois representations attached to Q-CURVES and the generalized fermat equation a4+b2=cp
    Ellenberg, JS
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (04) : 763 - 787
  • [6] Jesmanowicz L., 1956, J NON-CRYST SOLIDS, V1, P196
  • [7] LE MH, 1995, ACTA ARITH, V71, P253
  • [8] On Terai's conjecture concerning Pythagorean numbers
    Le, MH
    [J]. ACTA ARITHMETICA, 2001, 100 (01) : 41 - 45
  • [9] LJUNGGREN W., 1942, Vid. Akad. Oslo, V5, P1
  • [10] Pink I, 2007, PUBL MATH-DEBRECEN, V70, P149