Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay

被引:195
作者
Wang, Zhi-Cheng
Li, Wan-Tong [1 ]
Ruan, Shigui
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Hexi Univ, Dept Math, Zangye 734000, Peoples R China
[3] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
existence; uniqueness; asymptotic stability; traveling wave front; reaction advection diffusion equation; nonlocal delay; bistable;
D O I
10.1016/j.jde.2007.03.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the existence, uniqueness and globally asymptotic stability of traveling wave fronts in the quasi-monotone reaction advection diffusion equations with nonlocal delay. Under bistable assumption, we construct various pairs of super- and subsolutions and employ the comparison principle and the squeezing technique to prove that the equation has a unique nondecreasing traveling wave front (up to translation), which is monotonically increasing and globally asymptotically stable with phase shift. The influence of advection on the propagation speed is also considered. Comparing with the previous results, our results recovers and/or improves a number of existing ones. In particular, these results can be applied to a reaction advection diffusion equation with nonlocal delayed effect and a diffusion population model with distributed maturation delay, some new results are obtained. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:153 / 200
页数:48
相关论文
共 49 条
[1]   Monotone travelling fronts in an age-structured reaction-diffusion model of a single species [J].
Al-Omari, J ;
Gourley, SA .
JOURNAL OF MATHEMATICAL BIOLOGY, 2002, 45 (04) :294-312
[2]   A nonlocal reaction-diffusion model for a single species with stage structure and distributed maturation delay [J].
Al-Omari, JFM ;
Gourley, SA .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2005, 16 :37-51
[3]   Periodic traveling waves and locating oscillating patterns in multidimensional domains [J].
Alikakos, ND ;
Bates, PW ;
Chen, XF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (07) :2777-2805
[4]  
[Anonymous], 1992, PITMAN RES NOTES MAT
[5]   Travelling fronts for the KPP equation with spatio-temporal delay [J].
Ashwin, P ;
Bartuccelli, MV ;
Bridges, TJ ;
Gourley, SA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2002, 53 (01) :103-122
[6]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[7]  
BERESTYCKI H, 2003, NATO SCI C, V569
[8]   Dynamics of a strongly nonlocal reaction-diffusion population model [J].
Billingham, J .
NONLINEARITY, 2004, 17 (01) :313-346
[9]   SPATIAL STRUCTURES AND PERIODIC TRAVELING WAVES IN AN INTEGRODIFFERENTIAL REACTION-DIFFUSION POPULATION-MODEL [J].
BRITTON, NF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (06) :1663-1688
[10]  
Cencini M, 2003, LECT NOTES PHYS, V636, P187