Boron based layered electrode materials for metal-ion batteries

被引:9
|
作者
Hao, Kuan-Rong [1 ,2 ]
Yan, Qing-Bo [2 ]
Su, Gang [1 ,3 ,4 ]
机构
[1] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[2] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Kavli Inst Theoret Sci, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ELECTRICAL ENERGY-STORAGE; PROMISING ANODE MATERIAL; AB-INITIO PREDICTION; LI-ION; LITHIUM-ION; CATHODE MATERIAL; DIFFUSION; INTERCALATION; BOROPHENE; MONOLAYER;
D O I
10.1039/c9cp05318b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphite is the most commonly used electrode material, which is mainly due to two key advantages, i.e., its layered structure acts a perfect framework for the accommodation and migration of ions, and the light atomic mass of carbon is conducive to obtaining a high specific capacity. As a neighbor of carbon in the periodic table, boron is even lighter than carbon, and it can also form various layered structures. Here, we systematically investigate boron-based layered compounds to explore their potential applications as electrode materials by means of first-principle calculations. Among various types of boron compounds, MXB4 (M = Li, Na, Mg; X = Al, Ga) with the YCrB4-type structure are found to be potentially excellent electrode materials for metal-ion batteries. The adsorption and migration of Li/Na/Mg in MXB4 have been presented, and migration barriers comparable with conventional electrode materials are observed. In particular, Li2AlB4 and Li2GaB4 are found to exhibit quite high specific capacities of 754 mA h g(-1) and 470 mA h g(-1) compared to the theoretical value of graphite (372 mA h g(-1)) as well as low average voltages of 0.71 V and 0.79 V, respectively, revealing that they may be good anode materials for Lithium ion batteries.
引用
收藏
页码:709 / 715
页数:7
相关论文
共 50 条
  • [1] Bi-Based Electrode Materials for Alkali Metal-Ion Batteries
    Wang, Anni
    Hong, Wanwan
    Yang, Li
    Tian, Ye
    Qiu, Xuejing
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    SMALL, 2020, 16 (48)
  • [2] Carbonyl polymeric electrode materials for metal-ion batteries
    Mi Tang
    Hongyang Li
    Erjing Wang
    Chengliang Wang
    Chinese Chemical Letters, 2018, 29 (02) : 232 - 244
  • [3] Carbonyl polymeric electrode materials for metal-ion batteries
    Tang, Mi
    Li, Hongyang
    Wang, Erjing
    Wang, Chengliang
    CHINESE CHEMICAL LETTERS, 2018, 29 (02) : 232 - 244
  • [4] Machine Learning the Voltage of Electrode Materials in Metal-Ion Batteries
    Joshi, Rajendra P.
    Eickholt, Jesse
    Li, Liling
    Fornari, Marco
    Barone, Veronica
    Peraltata, Juan E.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (20) : 18494 - 18503
  • [5] Will Vanadium-Based Electrode Materials Become the Future Choice for Metal-Ion Batteries?
    Zhao, Dong
    Wang, Chunlei
    Ding, Yan
    Ding, Mingyue
    Cao, Yuliang
    Chen, Zhongxue
    CHEMSUSCHEM, 2022, 15 (12)
  • [6] Recent progress in COF-based electrode materials for rechargeable metal-ion batteries
    Shunhang Wei
    Jiwei Wang
    Yuzhao Li
    Zebo Fang
    Lei Wang
    Yuxi Xu
    Nano Research, 2023, 16 (5) : 6753 - 6770
  • [7] Recent progress in COF-based electrode materials for rechargeable metal-ion batteries
    Wei, Shunhang
    Wang, Jiwei
    Li, Yuzhao
    Fang, Zebo
    Wang, Lei
    Xu, Yuxi
    NANO RESEARCH, 2023,
  • [8] Covalent Organic Frameworks as Electrode Materials for Alkali Metal-ion Batteries
    Cui, Shuzhen
    Miao, Wenxing
    Peng, Hui
    Ma, Guofu
    Lei, Ziqiang
    Zhu, Lei
    Xu, Yuxi
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (12)
  • [9] Covalent organic frameworks as electrode materials for rechargeable metal-ion batteries
    Wu, Manman
    Zhou, Zhen
    INTERDISCIPLINARY MATERIALS, 2023, 2 (02): : 231 - 259
  • [10] Carbon materials for metal-ion batteries
    Zhong Qiu
    Feng Cao
    Guoxiang Pan
    Chen Li
    Minghua Chen
    Yongqi Zhang
    Xinping He
    Yang Xia
    Xinhui Xia
    Wenkui Zhang
    ChemPhysMater, 2023, (04) : 267 - 281