Carbon nanomaterials for cardiovascular theranostics: Promises and challenges

被引:56
作者
Alagarsamy, Keshav Narayan [1 ]
Mathan, Sajitha [2 ]
Yan, Weiang [1 ,3 ]
Rafieerad, Alireza [1 ]
Sekaran, Saravanan [2 ]
Manego, Hanna [1 ]
Dhingra, Sanjiv [1 ]
机构
[1] Univ Manitoba, Coll Med, Fac Hlth Sci,Regenerat Med Program,Dept Physiol &, Inst Cardiovasc Sci,St Boniface Hosp Albrechtsen, Winnipeg, MB, Canada
[2] SASTRA Univ, Ctr Nanotechnol & Adv Biomat CeNTAB, Sch Chem & Biotechnol, Dept Bioengn, Thanjavur 613401, Tamil Nadu, India
[3] Univ Manitoba, Max Rady Coll Med, Rady Fac Hlth Sci, Dept Surg,Sect Cardiac Surg, Winnipeg, MB, Canada
基金
加拿大健康研究院;
关键词
Carbon nanomaterials; Cardiovascular disease; Drug delivery; Biosensors; Cardiac tissue engineering; Immunomodulation; CARDIAC TROPONIN-I; GRAPHENE QUANTUM DOTS; ELECTROCHEMICAL IMMUNOSENSOR; MYOCARDIAL-INFARCTION; NANOTUBE-COMPOSITE; IMMUNE-RESPONSES; GENE DELIVERY; STEM-CELLS; OXIDE; HYDROGELS;
D O I
10.1016/j.bioactmat.2020.12.030
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Heart attack and stroke cause irreversible tissue damage. The currently available treatment options are limited to "damage-control" rather than tissue repair. The recent advances in nanomaterials have offered novel approaches to restore tissue function after injury. In particular, carbon nanomaterials (CNMs) have shown significant promise to bridge the gap in clinical translation of biomaterial based therapies. This family of carbon allotropes (including graphenes, carbon nanotubes and fullerenes) have unique physiochemical properties, including exceptional mechanical strength, electrical conductivity, chemical behaviour, thermal stability and optical properties. These intrinsic properties make CNMs ideal materials for use in cardiovascular theranostics. This review is focused on recent efforts in the diagnosis and treatment of heart diseases using graphenes and carbon nanotubes. The first section introduces currently available derivatives of graphenes and carbon nanotubes and discusses some of the key characteristics of these materials. The second section covers their application in drug delivery, biosensors, tissue engineering and immunomodulation with a focus on cardiovascular applications. The final section discusses current shortcomings and limitations of CNMs in cardiovascular applications and reviews ongoing efforts to address these concerns and to bring CNMs from bench to bedside.
引用
收藏
页码:2261 / 2280
页数:20
相关论文
共 234 条
[1]   Different Technical Applications of Carbon Nanotubes [J].
Abdalla, S. ;
Al-Marzouki, F. ;
Al-Ghamdi, Ahmed A. ;
Abdel-Daiem, A. .
NANOSCALE RESEARCH LETTERS, 2015, 10
[2]   Concurrent application of conductive biopolymeric chitosan/polyvinyl alcohol/MWCNTs nanofibers, intracellular signaling manipulating molecules and electrical stimulation for more effective cardiac tissue engineering [J].
Abedi, Ali ;
Bakhshandeh, Behnaz ;
Babaie, Ali ;
Mohammadnejad, Javad ;
Vahdat, Sadaf ;
Mombeiny, Reza ;
Moosavi, Seyed Reza ;
Amini, Javid ;
Tayebi, Lobat .
MATERIALS CHEMISTRY AND PHYSICS, 2021, 258
[3]   Carbon nanotubes embedded in embryoid bodies direct cardiac differentiation [J].
Ahadian, Samad ;
Yamada, Shukuyo ;
Estili, Mehdi ;
Liang, Xiaobin ;
Sadeghian, Ramin Banan ;
Nakajima, Ken ;
Shiku, Hitoshi ;
Matsue, Tomokazu ;
Khademhosseini, Ali .
BIOMEDICAL MICRODEVICES, 2017, 19 (03)
[4]   Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering [J].
Ahadian, Samad ;
Huyer, Locke Davenport ;
Estili, Mehdi ;
Yee, Bess ;
Smith, Nathaniel ;
Xu, Zhensong ;
Sun, Yu ;
Radisic, Milica .
ACTA BIOMATERIALIA, 2017, 52 :81-91
[5]   Graphene induces spontaneous cardiac differentiation in embryoid bodies [J].
Ahadian, Samad ;
Zhou, Yuanshu ;
Yamada, Shukuyo ;
Estili, Mehdi ;
Liang, Xiaobin ;
Nakajima, Ken ;
Shiku, Hitoshi ;
Matsue, Tomokazu .
NANOSCALE, 2016, 8 (13) :7075-7084
[6]   Application of injectable hydrogels for cardiac stem cell therapy and tissue engineering [J].
Alagarsamy, Keshav Narayan ;
Yan, Weiang ;
Srivastava, Abhay ;
Desiderio, Vincenzo ;
Dhingra, Sanjiv .
REVIEWS IN CARDIOVASCULAR MEDICINE, 2019, 20 (04) :221-230
[7]   Carbon Nanotube Scaffolds Instruct Human Dendritic Cells: Modulating Immune Responses by Contacts at the Nanoscale [J].
Aldinucci, Alessandra ;
Turco, Antonio ;
Biagioli, Tiziana ;
Toma, Francesca Maria ;
Bani, Daniele ;
Guasti, Daniele ;
Manuelli, Cinzia ;
Rizzetto, Lisa ;
Cavalieri, Duccio ;
Massacesi, Luca ;
Mello, Tommaso ;
Scaini, Denis ;
Bianco, Alberto ;
Ballerini, Laura ;
Prato, Maurizio ;
Ballerini, Clara .
NANO LETTERS, 2013, 13 (12) :6098-6105
[8]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[9]   Engineering Nanomaterials to Address Cell-Mediated Inflammation in Atherosclerosis [J].
Allen S. ;
Liu Y.-G. ;
Scott E. .
Regenerative Engineering and Translational Medicine, 2016, 2 (1) :37-50
[10]   Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity [J].
Alshehri, Reem ;
Ilyas, Asad Muhammad ;
Hasan, Anwarul ;
Arnaout, Adnan ;
Ahmed, Farid ;
Memic, Adnan .
JOURNAL OF MEDICINAL CHEMISTRY, 2016, 59 (18) :8149-8167