SUBCLASSES OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH GENERALIZED RUSCHEWEYH OPERATOR

被引:5
作者
Dziok, Jacek [1 ]
Yalcin, Sibel [2 ]
Altinkaya, Sahsene [2 ]
机构
[1] Univ Rzeszow, Inst Math, Rzeszow, Poland
[2] Bursa Uludag Univ, Dept Math, Fac Arts & Sci, Bursa, Turkey
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2019年 / 106卷 / 120期
关键词
Harmonic functions; univalent functions; subordination; Hadamard product; multiplier transformation; Ruscheweyh operator; FUNCTIONS STARLIKE;
D O I
10.2298/PIM1920019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new subclass of functions defined by multiplier differential operator and give coefficient bounds for these subclasses. Also, we obtain necessary and sufficient convolution conditions, distortion bounds and extreme points for these subclasses of functions.
引用
收藏
页码:19 / 28
页数:10
相关论文
共 25 条
[1]   Connections between various subclasses of planar harmonic mappings involving hypergeometric functions [J].
Ahuja, Om P. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (01) :305-316
[2]   Certain multipliers of univalent harmonic functions [J].
Ahuja, OP ;
Jahangiri, JM .
APPLIED MATHEMATICS LETTERS, 2005, 18 (12) :1319-1324
[3]  
Al-Kharsani HA, 2007, J INEQUAL PURE APPL, V8, P8
[4]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[5]  
Darus M., 2008, J ANAL APPL, V6, P17
[6]   Classes of harmonic functions associated with Ruscheweyh derivatives [J].
Dziok, Jacek .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) :1315-1329
[7]   On Janowski harmonic functions [J].
Dziok, Jacek .
JOURNAL OF APPLIED ANALYSIS, 2015, 21 (02) :99-107
[8]   Harmonic functions with varying coefficients [J].
Dziok, Jacek ;
Jahangiri, Jay ;
Silverman, Herb .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
[9]   Generalizations of starlike harmonic functions [J].
Dziok, Jacek ;
Darus, Maslina ;
Sokol, Janusz ;
Bulboaca, Teodor .
COMPTES RENDUS MATHEMATIQUE, 2016, 354 (01) :13-18
[10]  
JAHANGIRI J. M., 2002, INT J APPL MATH, V8, P267