Stable decentralized adaptive control design of robot manipulators using neural network approximations

被引:4
作者
Huang, SN [1 ]
Tan, KK [1 ]
Lee, TH [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117548, Singapore
关键词
adaptive control; decentralized control; neural networks; radial basis function; system uncertainty;
D O I
10.1163/156855303765203056
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, we present a decentralized neural network (NN) adaptive technique for control of robot manipulators in the presence of unknown non-linear functions. Radial basis function NNs are used to approximate the non-linear functions to include the case of both parametric and dynamic uncertainty in each subsystem. The robustifying terms are added to the controllers to overcome the effects of the interconnections. The stability can be guaranteed by using a rigid proof. Finally, simulation is given to illustrate the effectiveness of the proposed algorithm.
引用
收藏
页码:369 / 383
页数:15
相关论文
共 18 条
[1]  
CHEN DG, 1990, PROCEEDINGS OF THE 29TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, P3319, DOI 10.1109/CDC.1990.203409
[2]   ADAPTIVELY CONTROLLING NONLINEAR CONTINUOUS-TIME SYSTEMS USING MULTILAYER NEURAL NETWORKS [J].
CHEN, FC ;
LIU, CC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (06) :1306-1310
[3]  
Efrati T, 1997, IEEE DECIS CONTR P, P2501, DOI 10.1109/CDC.1997.657532
[4]   ROBUST ADAPTIVE DECENTRALIZED CONTROL OF ROBOT MANIPULATORS [J].
FU, LC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (01) :106-110
[5]  
Holcomb T., 1991, Proceedings of the 1991 American Control Conference (IEEE Cat. No. 91CH2939-7), P2331
[6]   Adaptive motion control using neural network approximations [J].
Huang, SN ;
Tan, KK ;
Lee, TH .
AUTOMATICA, 2002, 38 (02) :227-233
[7]   Use of neural fuzzy networks with mixed genetic/gradient algorithm in automated vehicle control [J].
Huang, SN ;
Ren, W .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1999, 46 (06) :1090-1102
[8]   A combined PID/adaptive controller for a class of nonlinear systems [J].
Huang, SN ;
Tan, KK ;
Lee, TH .
AUTOMATICA, 2001, 37 (04) :611-618
[9]  
LEONARD NE, 1992, PROCEEDINGS OF THE 31ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P267, DOI 10.1109/CDC.1992.371741
[10]   Contro of nonlinear dynamical systems using neural networks .2. Observability, identification, and control [J].
Levin, AU ;
Narendra, KS .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (01) :30-42