Squares of primes;
Exponential sums;
Sieve methods;
P MODULO ONE;
QUADRATIC EQUATIONS;
LINEAR-EQUATIONS;
VARIABLES;
THEOREM;
VALUES;
D O I:
10.1016/j.jnt.2010.03.010
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper we continue our study, begun in G. Harman and A.V. Kumchev (2006) [10], of the exceptional set of integers, not restricted by elementary congruence conditions, which cannot be represented as sums of three or four squares of primes. We correct a serious oversight in our first paper, but make further progress on the exponential sums estimates needed, together with an embellishment of the previous sieve technique employed. This leads to an improvement in our bounds for the maximal size of the exceptional sets. (C) 2010 Elsevier Inc. All rights reserved.
机构:
Aix Marseille Univ, UMR 7373, Inst Math Marseille, CNRS, Site Sud,Campus Luminy, Case 907, F-13288 Marseille 9, FranceAix Marseille Univ, UMR 7373, Inst Math Marseille, CNRS, Site Sud,Campus Luminy, Case 907, F-13288 Marseille 9, France
Ramare, Olivier
Viswanadham, G. K.
论文数: 0引用数: 0
h-index: 0
机构:
IISER Berhampur, Berhampur 760010, Orissa, IndiaAix Marseille Univ, UMR 7373, Inst Math Marseille, CNRS, Site Sud,Campus Luminy, Case 907, F-13288 Marseille 9, France
机构:
Univ Ulm, Inst Number Theory & Probabil Theory, D-89069 Ulm, GermanyUniv Ulm, Inst Number Theory & Probabil Theory, D-89069 Ulm, Germany
Maier, H.
Sankaranarayanan, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulm, Inst Number Theory & Probabil Theory, D-89069 Ulm, Germany
TIFR, Sch Math, Bombay 400005, Maharashtra, IndiaUniv Ulm, Inst Number Theory & Probabil Theory, D-89069 Ulm, Germany