Chaos on Fuzzy Dynamical Systems

被引:5
|
作者
Martinez-Gimenez, Felix [1 ]
Peris, Alfred [1 ]
Rodenas, Francisco [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
关键词
chaotic operators; hypercyclic operators; hyperspaces of compact sets; spaces of fuzzy sets; A-transitivity; DISTRIBUTIONAL CHAOS; TRANSITIVITY; OPERATORS;
D O I
10.3390/math9202629
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a continuous map f : X -> X on a metric space, it induces the maps f over bar :K(X) -> K(X), on the hyperspace of nonempty compact subspaces of X, and (f) over cap :F(X) -> F(X), on the space of normal fuzzy sets, consisting of the upper semicontinuous functions u:X -> [0,1] with compact support. Each of these spaces can be endowed with a respective metric. In this work, we studied the relationships among the dynamical systems (X,f), (K(X),f over bar ), and (F(X),(f) over cap). In particular, we considered several dynamical properties related to chaos: Devaney chaos, A-transitivity, Li-Yorke chaos, and distributional chaos, extending some results in work by Jardon, Sanchez and Sanchis (Mathematics 2020, 8, 1862) and work by Bernardes, Peris and Rodenas (Integr. Equ. Oper. Theory 2017, 88, 451-463). Especial attention is given to the dynamics of (continuous and linear) operators on metrizable topological vector spaces (linear dynamics).
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Mean Li-Yorke chaos in Banach spaces
    Bernardes, N. C., Jr.
    Bonilla, A.
    Peris, A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (03)
  • [42] Mean Li-Yorke Chaos and Mean Sensitivity in Non-autonomous Discrete Systems
    Yin, Zongbin
    He, Shengnan
    Chen, Zhijing
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (01) : 245 - 262
  • [43] Chaos in a class of non-autonomous discrete systems
    Wu, Xinxing
    Zhu, Peiyong
    APPLIED MATHEMATICS LETTERS, 2013, 26 (04) : 431 - 436
  • [44] Distributional chaos in constant-length substitution systems
    Wang, Hui
    Fan, Qinjie
    Liao, Gongfu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 1902 - 1908
  • [45] On distributional chaos in non-autonomous discrete systems
    Shao, Hua
    Shi, Yuming
    Zhu, Hao
    CHAOS SOLITONS & FRACTALS, 2018, 107 : 234 - 243
  • [46] On quasi-continuous dynamical systems and transitivity
    Fedeli, Alessandro
    TOPOLOGY AND ITS APPLICATIONS, 2022, 312
  • [47] Herz-Schur multipliers of dynamical systems
    McKee, A.
    Todorov, I. G.
    Turowska, L.
    ADVANCES IN MATHEMATICS, 2018, 331 : 387 - 438
  • [48] Transitive Limit Closures of Convex Dynamical Systems
    Phil Diamond
    Alexander Vladimirov
    Peter Kloeden
    Set-Valued Analysis, 1998, 6 : 113 - 127
  • [49] DYNAMICAL SYSTEMS ON ARITHMETIC FUNCTIONS DETERMINED BY PRIMES
    Cho, Ilwoo
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (01): : 173 - 215
  • [50] Characterizing ergodicity of induced hyperspace dynamical systems
    Li, Risong
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (01): : 223 - 238