Suppression of methanogenesis for hydrogen production in single chamber microbial electrolysis cells using various antibiotics

被引:75
作者
Catal, Tunc [1 ,2 ]
Lesnik, Keaton Larson [3 ]
Liu, Hong [3 ]
机构
[1] Uskudar Univ, Dept Mol Biol & Genet, TR-34662 Istanbul, Turkey
[2] Uskudar Univ, Biotechnol Res & Applicat Ctr, TR-34662 Istanbul, Turkey
[3] Oregon State Univ, Dept Biol & Ecol Engn, Corvallis, OR 97331 USA
基金
美国国家科学基金会;
关键词
Antibiotics; Hydrogen; Methanogenesis; Microbial electrolysis cell; BIOGAS PRODUCTION; CONTINUOUS-FLOW; GENERATION; REDUCTION; ENERGY; BUFFER;
D O I
10.1016/j.biortech.2015.03.099
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Methanogens can utilize the hydrogen produced in microbial electrolysis cells (MECs), thereby decreasing the hydrogen generation efficiency. However, various antibiotics have previously been shown to inhibit methanogenesis. In the present study antibiotics, including neomycin sulfate, 2-bromoethane sulfonate, 2-chloroethane sulfonate, 8-aza-hypoxanthine, were examined to determine if hydrogen production could be improved through inhibition of methanogenesis but not hydrogen production in MECs. 1.1 mM neomycin sulfate inhibited both methane and hydrogen production while 2-chloroethane sulfonate (20 mM), 2-bromoethane sulfonate (20 mM), and 8-aza-hypoxanthine (3.6 mM) can inhibited methane generation and with concurrent increases in hydrogen production. Our results indicated that adding select antibiotics to the mixed species community in MECs could be a suitable method to enhance hydrogen production efficiency. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:77 / 83
页数:7
相关论文
共 35 条
  • [1] Neomycin resistance as a selectable marker in Methanococcus maripaludis
    Argyle, JL
    Tumbula, DL
    Leigh, JA
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (11) : 4233 - 4237
  • [2] Generation of electricity in microbial fuel cells at sub-ambient temperatures
    Catal, Tunc
    Kavanagh, Paul
    O'Flaherty, Vincent
    Leech, Donal
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (05) : 2676 - 2681
  • [3] Increasing power generation for scaling up single-chamber air cathode microbial fuel cells
    Cheng, Shaoan
    Logan, Bruce E.
    [J]. BIORESOURCE TECHNOLOGY, 2011, 102 (06) : 4468 - 4473
  • [4] 2-bromoethanesulfonate affects bacteria in a trichloroethene-dechlorinating culture
    Chiu, PC
    Lee, M
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (05) : 2371 - 2374
  • [5] Methanogenesis in membraneless microbial electrolysis cells
    Clauwaert, Peter
    Verstraete, Willy
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2009, 82 (05) : 829 - 836
  • [6] Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell
    Croese, Elsemiek
    Pereira, Maria Alcina
    Euverink, Gert-Jan W.
    Stams, Alfons J. M.
    Geelhoed, Jeanine S.
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 92 (05) : 1083 - 1093
  • [7] Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell
    Cusick, Roland D.
    Ullery, Mark L.
    Dempsey, Brian A.
    Logan, Bruce E.
    [J]. WATER RESEARCH, 2014, 54 : 297 - 306
  • [8] Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms
    Fan, Yanzhen
    Hu, Hongqiang
    Liu, Hong
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (23) : 8154 - 8158
  • [9] Gunsalus I C, 1978, Adv Enzymol Relat Areas Mol Biol, V47, P1
  • [10] Determination of the Internal Chemical Energy of Wastewater
    Heidrich, E. S.
    Curtis, T. P.
    Dolfing, J.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (02) : 827 - 832