CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana

被引:143
作者
Adamczyk, Michal [1 ]
Lasek, Janusz [1 ]
Skawinska, Agnieszka [1 ]
机构
[1] Inst Chem Proc Coal, Zamkowa 1, PL-41803 Zabrze, Poland
关键词
CO2; biofixation; Green algae; Chlorella vulgaris; Nannochloropsis gaditana; Growth kinetics; CARBON-DIOXIDE SEQUESTRATION; ENGINEERING STRATEGIES; SCENEDESMUS-OBLIQUUS; SPIRULINA-PLATENSIS; LIPID PRODUCTION; MICROALGAE; BIOMASS; PHOTOBIOREACTOR; MITIGATION; PRODUCTIVITY;
D O I
10.1007/s12010-016-2062-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CO2 biofixation was investigated using tubular bioreactors (15 and 1.5 l) either in the presence of green algae Chlorella vulgaris or Nannochloropsis gaditana. The cultivation was carried out in the following conditions: temperature of 25 A degrees C, inlet-CO2 of 4 and 8 vol%, and artificial light enhancing photosynthesis. Higher biofixation were observed in 8 vol% CO2 concentration for both microalgae cultures than in 4 vol%. Characteristic process parameters such as productivity, CO2 fixation, and kinetic rate coefficient were determined and discussed. Simplified and advanced methods for determination of CO2 fixation were compared. In a simplified method, it is assumed that 1 kg of produced biomass equals 1.88 kg recycled CO2. Advance method is based on empirical results of the present study (formula with carbon content in biomass). It was observed that application of the simplified method can generate large errors, especially if the biomass contains a relatively low amount of carbon. N. gaditana is the recommended species for CO2 removal due to a high biofixation rate-more than 1.7 g/l/day. On day 10 of cultivation, the cell concentration was more than 1.7 x 10(7) cells/ml. In the case of C. vulgaris, the maximal biofixation rate and cell concentration did not exceed 1.4 g/l/day and 1.3 x 10(7) cells/ml, respectively.
引用
收藏
页码:1248 / 1261
页数:14
相关论文
共 45 条
[1]   Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? [J].
Acien Fernandez, F. Gabriel ;
Gonzalez-Lopez, C. V. ;
Fernandez Sevilla, J. M. ;
Molina Grima, E. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 96 (03) :577-586
[2]   Performance Evaluation of a Bubble Column Photobioreactor for Carbon Dioxide Sequestration by Chlorella vulgaris [J].
Alhamed, Yahia A. ;
Edris, Gaber M. ;
GadelHak, Yasser M. .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (12) :8453-8463
[3]  
[Anonymous], 2015, CO2 emissions from fuel combustion
[4]   Modeling the effects of light and temperature on algae growth: State of the art and critical assessment for productivity prediction during outdoor cultivation [J].
Bechet, Quentin ;
Shilton, Andy ;
Guieysse, Benoit .
BIOTECHNOLOGY ADVANCES, 2013, 31 (08) :1648-1663
[5]   An alternative reference scenario for global CO2 emissions from fuel consumption: An ARFIMA approach [J].
Belbute, Jose M. ;
Pereira, Alfredo M. .
ECONOMICS LETTERS, 2015, 136 :108-111
[6]   CO2 mitigation with microalgae systems [J].
Benemann, JR .
ENERGY CONVERSION AND MANAGEMENT, 1997, 38 :S475-S479
[7]   Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis [J].
Chen, Chun-Yen ;
Kao, Pei-Chun ;
Tsai, Chia-Jung ;
Lee, Duu-Jong ;
Chang, Jo-Shu .
BIORESOURCE TECHNOLOGY, 2013, 145 :307-312
[8]   Biodiesel from microalgae [J].
Chisti, Yusuf .
BIOTECHNOLOGY ADVANCES, 2007, 25 (03) :294-306
[9]   Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration [J].
Chiu, Sheng-Yi ;
Kao, Chien-Ya ;
Tsai, Ming-Ta ;
Ong, Seow-Chin ;
Chen, Chiun-Hsun ;
Lin, Chih-Sheng .
BIORESOURCE TECHNOLOGY, 2009, 100 (02) :833-838
[10]   Biofixation of carbon dioxide by Spirulina sp and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor [J].
de Morais, Michele Greque ;
Vieira Costa, Jorge Alberto .
JOURNAL OF BIOTECHNOLOGY, 2007, 129 (03) :439-445