Mapping vegetation species succession in a mountainous grassland ecosystem using Landsat, ASTER MI, and Sentinel-2 data

被引:6
|
作者
Adagbasa, Efosa Gbenga [1 ]
Mulcwada, Geofrey [2 ,3 ]
机构
[1] Univ Free State, Dept Geog, Bloemfontein, South Africa
[2] Univ Free State, Afromontane Res Unit, Bloemfontein, South Africa
[3] Univ Montana, WA Franke Coll Forestry & Conservat, Dept Geog, Missoula, MT 59812 USA
来源
PLOS ONE | 2022年 / 17卷 / 01期
关键词
RANDOM FOREST; SPECTRAL DISCRIMINATION; CLASSIFICATION; IMAGE; BAND;
D O I
10.1371/journal.pone.0256672
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Vegetation species succession and composition are significant factors determining the rate of ecosystem biodiversity recovery after being disturbed and subsequently vital for sustainable and effective natural resource management and biodiversity. The succession and composition of grasslands ecosystems worldwide have significantly been affected by accelerated environmental changes due to natural and anthropogenic activities. Therefore, understanding spatial data on the succession of grassland vegetation species and communities through mapping and monitoring is essential to gain knowledge on the ecosystem and other ecosystem services. This study used a random forest machine learning classifier on the Google Earth Engine platform to classify grass vegetation species with Landsat 7 ETM+ and ASTER multispectral imager (MI) data resampled with the current Sentinel-2 MSI data to map and estimate the changes in vegetation species succession. The results indicate that ASTER MI has the least accuracy of 72%, Landsat 7 ETM+ 84%, and Sentinel-2 had the highest of 87%. The result also shows that other species had replaced four dominant grass species totaling about 49 km(2) throughout the study.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Estimating grassland vegetation cover with remote sensing: A comparison between Landsat-8, Sentinel-2 and PlanetScope imagery
    Andreatta, Davide
    Gianelle, Damiano
    Scotton, Michele
    Dalponte, Michele
    ECOLOGICAL INDICATORS, 2022, 141
  • [22] A Unified Physically Based Method for Monitoring Grassland Nitrogen Concentration with Landsat 7, Landsat 8, and Sentinel-2 Satellite Data
    Dehghan-Shoar, Mohammad Hossain
    Pullanagari, Reddy R. R.
    Kereszturi, Gabor
    Orsi, Alvaro A. A.
    Yule, Ian J. J.
    Hanly, James
    REMOTE SENSING, 2023, 15 (10)
  • [23] Mapping of vegetation cover using Sentinel-2 to estimate forest fire danger
    Yankovich, Elena P.
    Yankovich, Ksenia S.
    Baranovskiy, Nikolay V.
    Bazarov, Alexander V.
    Sychev, Roman S.
    Badmaev, Nimazhap B.
    REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE XXIV, 2019, 11152
  • [24] Forest succession mapping for post-agricultural areas using Sentinel-2, PlanetScope imageries and LiDAR data
    Szostak, Marta
    ADVANCES IN GEODESY AND GEOINFORMATION, 2022, 71 (02)
  • [25] Mapping Daily Evapotranspiration at Field Scale Using the Harmonized Landsat and Sentinel-2 Dataset, with Sharpened VIIRS as a Sentinel-2 Thermal Proxy
    Xue, Jie
    Anderson, Martha C.
    Gao, Feng
    Hain, Christopher
    Yang, Yun
    Knipper, Kyle R.
    Kustas, William P.
    Yang, Yang
    REMOTE SENSING, 2021, 13 (17)
  • [26] MAPPING VEGETATION COMMUNITIES INSIDE WETLANDS USING SENTINEL-2 IMAGERY IN IRELAND
    Bhatnagar, Saheba
    Gill, Laurence
    Regan, Shane
    Naughton, Owen
    Johnston, Paul
    Waldren, Steve
    Ghosh, Bidisha
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 88
  • [27] WINTER WHEAT YIELD ASSESSMENT USING LANDSAT 8 AND SENTINEL-2 DATA
    Skakun, S.
    Franch, B.
    Vermote, E.
    Roger, J. -C.
    Justice, C.
    Masek, J.
    Murphy, E.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5964 - 5967
  • [28] National mapping and estimation of forest area by dominant tree species using Sentinel-2 data
    Breidenbach, Johannes
    Waser, Lars T.
    Debella-Gilo, Misganu
    Schumacher, Johannes
    Rahlf, Johannes
    Hauglin, Marius
    Puliti, Stefano
    Astrup, Rasmus
    CANADIAN JOURNAL OF FOREST RESEARCH, 2021, 51 (03) : 365 - 379
  • [29] Digital soil mapping using Sentinel-2 imagery supported by ASTER thermal infrared bands
    Karyotis, Konstantinos
    Tziolas, Nikolaos
    Tsakiridis, Nikolaos
    Samarinas, Nikiforos
    Chatzimisios, Periklis
    Dematte, Jose Alexandre M.
    Zalidis, George
    EIGHTH INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2020), 2020, 11524
  • [30] Comparison of Landsat and Sentinel-2 surface reflectance data and derived vegetation indexes: application in a rainfed vineyard
    Puig-Sirera, Angela
    Marasco, Salvatore
    Carrara, Marco
    Rallo, Giovanni
    Intrigliolo, Diego S.
    Ramirez-Cuesta, Juan Miguel
    PROCEEDINGS OF 2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY, METROAGRIFOR, 2023, : 815 - 819