Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure

被引:32
作者
Bashirpour, M. [1 ]
Ghorbani, S. [1 ]
Kolahdouz, M. [1 ]
Neshat, M. [1 ]
Masnadi-Shirazi, M. [1 ]
Aghababa, H. [1 ]
机构
[1] Univ Tehran, Sch Elect & Comp Engn, Fac Engn, Tehran, Iran
基金
美国国家科学基金会;
关键词
GAAS; RADIATION;
D O I
10.1039/c7ra11398f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A photoconductive terahertz antenna based on a distributed Bragg reflector, recessed nanoplasmonic grating and recessed electrodes is proposed in this paper. By use of the finite element method and full wave simulation, the effect of geometrical parameters on the transient photocurrent of a proposed photoconductive antenna is investigated. The recessed nanoplasmonic structure reduces the reflection of laser light to less than 1.5% from the surface of low temperature gallium arsenide in comparison with 29% for a conventional photoconductive antenna. According to the results, the distributed Bragg reflector in combination with recessed nanoplasmonic grating and recessed electrodes results in 5265% photocurrent peak enhancement in comparison to a conventional photoconductive terahertz antenna.
引用
收藏
页码:53010 / 53017
页数:8
相关论文
共 36 条
[1]   Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing [J].
Akbar, F. ;
Kolahdouz, M. ;
Larimian, Sh. ;
Radfar, B. ;
Radamson, H. H. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (07) :4347-4379
[2]   PICOSECOND PHOTOCONDUCTING HERTZIAN DIPOLES [J].
AUSTON, DH ;
CHEUNG, KP ;
SMITH, PR .
APPLIED PHYSICS LETTERS, 1984, 45 (03) :284-286
[3]  
Bashirpour M., 2016, P AS COMM PHOT C 201, DOI [10.1364/ACPC.2016.AS2E.4, DOI 10.1364/ACPC.2016.AS2E.4]
[4]   Enhancement of optical absorption in LT-GaAs by double layer nanoplasmonic array in photoconductive antenna [J].
Bashirpour, Mohammad ;
Kolandouz, Mohammadreza ;
Neshat, Mohammad .
VACUUM, 2017, 146 :430-436
[5]   Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas [J].
Berry, Christopher W. ;
Hashemi, Mohammad R. ;
Jarrahi, Mona .
APPLIED PHYSICS LETTERS, 2014, 104 (08)
[6]   Computational modeling of plasmonic thin-film terahertz photoconductive antennas [J].
Burford, Nathan ;
El-Shenawee, Magda .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (04) :748-759
[7]   Review of terahertz photoconductive antenna technology [J].
Burford, Nathan M. ;
El-Shenawee, Magda O. .
OPTICAL ENGINEERING, 2017, 56 (01)
[8]  
Chuang S. L., 2009, PHYS PHOTONIC DEVICE
[9]   Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas [J].
Duvillaret, L ;
Garet, F ;
Roux, JF ;
Coutaz, JL .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2001, 7 (04) :615-623
[10]   Materials for terahertz science and technology [J].
Ferguson, B ;
Zhang, XC .
NATURE MATERIALS, 2002, 1 (01) :26-33