Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure

被引:32
作者
Bashirpour, M. [1 ]
Ghorbani, S. [1 ]
Kolahdouz, M. [1 ]
Neshat, M. [1 ]
Masnadi-Shirazi, M. [1 ]
Aghababa, H. [1 ]
机构
[1] Univ Tehran, Sch Elect & Comp Engn, Fac Engn, Tehran, Iran
来源
RSC ADVANCES | 2017年 / 7卷 / 83期
基金
美国国家科学基金会;
关键词
GAAS; RADIATION;
D O I
10.1039/c7ra11398f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A photoconductive terahertz antenna based on a distributed Bragg reflector, recessed nanoplasmonic grating and recessed electrodes is proposed in this paper. By use of the finite element method and full wave simulation, the effect of geometrical parameters on the transient photocurrent of a proposed photoconductive antenna is investigated. The recessed nanoplasmonic structure reduces the reflection of laser light to less than 1.5% from the surface of low temperature gallium arsenide in comparison with 29% for a conventional photoconductive antenna. According to the results, the distributed Bragg reflector in combination with recessed nanoplasmonic grating and recessed electrodes results in 5265% photocurrent peak enhancement in comparison to a conventional photoconductive terahertz antenna.
引用
收藏
页码:53010 / 53017
页数:8
相关论文
共 36 条
  • [1] Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing
    Akbar, F.
    Kolahdouz, M.
    Larimian, Sh.
    Radfar, B.
    Radamson, H. H.
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (07) : 4347 - 4379
  • [2] PICOSECOND PHOTOCONDUCTING HERTZIAN DIPOLES
    AUSTON, DH
    CHEUNG, KP
    SMITH, PR
    [J]. APPLIED PHYSICS LETTERS, 1984, 45 (03) : 284 - 286
  • [3] Bashirpour M., 2016, P AS COMM PHOT C 201, DOI [10.1364/ACPC.2016.AS2E.4, DOI 10.1364/ACPC.2016.AS2E.4]
  • [4] Enhancement of optical absorption in LT-GaAs by double layer nanoplasmonic array in photoconductive antenna
    Bashirpour, Mohammad
    Kolandouz, Mohammadreza
    Neshat, Mohammad
    [J]. VACUUM, 2017, 146 : 430 - 436
  • [5] Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas
    Berry, Christopher W.
    Hashemi, Mohammad R.
    Jarrahi, Mona
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (08)
  • [6] Computational modeling of plasmonic thin-film terahertz photoconductive antennas
    Burford, Nathan
    El-Shenawee, Magda
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (04) : 748 - 759
  • [7] Review of terahertz photoconductive antenna technology
    Burford, Nathan M.
    El-Shenawee, Magda O.
    [J]. OPTICAL ENGINEERING, 2017, 56 (01)
  • [8] Chuang S. L., 2009, PHYS PHOTONIC DEVICE
  • [9] Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas
    Duvillaret, L
    Garet, F
    Roux, JF
    Coutaz, JL
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2001, 7 (04) : 615 - 623
  • [10] Materials for terahertz science and technology
    Ferguson, B
    Zhang, XC
    [J]. NATURE MATERIALS, 2002, 1 (01) : 26 - 33