MADNESS applied to density functional theory in chemistry and nuclear physics

被引:15
|
作者
Fann, G. I. [1 ]
Harrison, R. J. [1 ]
Beylkin, G. [1 ]
Jia, J. [1 ]
Hartman-Baker, R. [1 ]
Shelton, W. A. [1 ]
Sugiki, S. [1 ]
机构
[1] Oak Ridge Natl Lab, Div Math & Comp Sci, Computat Math Grp, Oak Ridge, TN 37831 USA
来源
SCIDAC 2007: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING | 2007年 / 78卷
关键词
D O I
10.1088/1742-6596/78/1/012018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe some recent mathematical results in constructing computational methods that lead to the development of fast and accurate multiresolution numerical methods for solving quantum chemistry and nuclear physics problems based on Density Functional Theory (DFT). Using low separation rank representations of functions and operators in conjunction with representations in multiwavelet bases, we developed a multiscale solution method for integral and differential equations and integral transforms. The Poisson equation, the Schrodinger equation, and the projector on the divergence free functions provide important examples with a wide range of applications in computational chemistry, nuclear physics, computational electromagnetic and fluid dynamics. We have implemented this approach along with adaptive representations of operators and functions in the multiwavelet basis and low separation rank (LSR) approximation of operators and functions. These methods have been realized and implemented in a software package called Multiresolution Adaptive Numerical Evaluation for Scientific Simulation (MADNESS).
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Applied nuclear physics at Yerevan Physics Institute
    Avagyan, R. H.
    Avetisyan, A. E.
    Kerobyan, I. A.
    Taroyan, S. P.
    JOURNAL OF CONTEMPORARY PHYSICS-ARMENIAN ACADEMY OF SCIENCES, 2009, 44 (05) : 250 - 255
  • [42] Nuclear magnetic moments in covariant density functional theory
    Li, Jian
    Meng, J.
    FRONTIERS OF PHYSICS, 2018, 13 (06)
  • [43] Uncertainty quantification and propagation in nuclear density functional theory
    N. Schunck
    J. D. McDonnell
    D. Higdon
    J. Sarich
    S. M. Wild
    The European Physical Journal A, 2015, 51
  • [44] Natural units for nuclear energy density functional theory
    Kortelainen, M.
    Furnstahl, R. J.
    Nazarewicz, W.
    Stoitsov, M. V.
    PHYSICAL REVIEW C, 2010, 82 (01):
  • [45] Nuclear magnetic moments in covariant density functional theory
    Jian Li
    J. Meng
    Frontiers of Physics, 2018, 13
  • [46] Uncertainty quantification and propagation in nuclear density functional theory
    Schunck, N.
    McDonnell, J. D.
    Higdon, D.
    Sarich, J.
    Wild, S. M.
    EUROPEAN PHYSICAL JOURNAL A, 2015, 51 (12) : 1 - 14
  • [47] The theory of conserving approximations and the density functional theory in approximations for nuclear matter
    Uechi, H
    PROGRESS OF THEORETICAL PHYSICS, 2004, 111 (04): : 525 - 543
  • [48] DENSITY-FUNCTIONAL THEORY APPLIED TO HYDROGEN ABSTRACTION REACTIONS
    SUSNOW, RG
    GREEN, WH
    DEAN, AM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 209 : 368 - PHYS
  • [49] Classical density-functional theory applied to the solid state
    Lutsko, James F.
    Schoonen, Cedric
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [50] Ab initio density functional theory applied to quasidegenerate problems
    Grabowski, Ireneusz
    Lotrich, Victor
    Bartlett, Rodney J.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (15)