A review of frontal methods for solving linear systems

被引:12
作者
Duff, IS
机构
[1] Comp. and Info. Systems Department, Atlas Centre, Rutherford Appleton Laboratory
关键词
sparse matrices; direct methods; BLAS; frontal methods; multifrontal methods;
D O I
10.1016/0010-4655(96)00020-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We review some recent developments in frontal and multifrontal schemes for solving sparse linear systems, including variants that exploit parallelism and matrix structure. An important aspect of these methods is the extensive use of full linear algebra kernels that are both portable and efficient over a wide range of machines.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 27 条
[1]   VECTORIZATION OF A MULTIPROCESSOR MULTIFRONTAL CODE [J].
AMESTOY, PR ;
DUFF, IS .
INTERNATIONAL JOURNAL OF SUPERCOMPUTER APPLICATIONS AND HIGH PERFORMANCE COMPUTING, 1989, 3 (03) :41-59
[2]  
AMESTOY PR, 1994, IN PRESS MUPS PARALL
[3]  
AMESTOY PR, 1994, INT J HIGH SPEED COM
[4]  
Anderson E., 1992, LAPACK User's Guide
[5]  
[Anonymous], 92086 RAL
[6]   CONCURRENT MULTIFRONTAL METHODS - SHARED MEMORY, CACHE, AND FRONTWIDTH ISSUES [J].
BENNER, RE ;
MONTRY, GR ;
WEIGAND, GG .
INTERNATIONAL JOURNAL OF SUPERCOMPUTER APPLICATIONS AND HIGH PERFORMANCE COMPUTING, 1987, 1 (03) :26-44
[7]  
CONROY JM, 1994, SIAM PROC S, P377
[8]  
DAVIS TA, 1995, TR95020 U FLOR COMP
[9]  
DAVIS TA, 1993, 93036 RAL
[10]  
DONGARRA JJ, 1990, ACM T MATH SOFTWARE, V16, P1, DOI 10.1145/77626.79170