FarSpeech: Arabic Natural Language Processing for Live Arabic Speech

被引:0
|
作者
Eldesouki, Mohamed [1 ]
Gopee, Naassih [1 ]
Ali, Ahmed [1 ]
Darwish, Kareem [1 ]
机构
[1] Hamad Bin Khalifa Univ, Qatar Comp Res Inst, Doha, Qatar
来源
INTERSPEECH 2019 | 2019年
关键词
Speech Transcription; live speech recognition; Natural Language Processing;
D O I
暂无
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
This paper presents FarSpeech, QCRI's combined Arabic speech recognition, natural language processing (NLP), and dialect identification pipeline. It features modern web technologies to capture live audio, transcribes Arabic audio, NLP processes the transcripts, and identifies the dialect of the speaker. For transcription, we use QATS, which is a Kaldi-based ASR system that uses Time Delay Neural Networks (TDNN). For NLP, we use a SOTA Arabic NLP toolkit that employs various deep neural network and SVM based models. Finally, our dialect identification system uses multi-modality from both acoustic and linguistic input. FarSpeech(1) presents different screens to display the transcripts, text segmentation, part-of-speech tags, recognized named entities, diacritized text, and the identified dialect of the speech.
引用
收藏
页码:2372 / 2373
页数:2
相关论文
共 50 条
  • [1] Introduction to Arabic natural language processing
    Habash N.Y.
    Synthesis Lectures on Human Language Technologies, 2010, 3 (01): : 1 - 185
  • [2] Natural Language Processing for Arabic Metaphors: A Conceptual Approach
    Alkhatib, Manar
    Shaalan, Khaled
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2016, 2017, 533 : 170 - 181
  • [3] Using Natural Language Processing For Analyzing Arabic Poetry Rhythm
    Ahmed, Munef Abdullah
    Trausan-Matu, Stefan
    2017 16TH ROEDUNET CONFERENCE: NETWORKING IN EDUCATION AND RESEARCH (ROEDUNET), 2017,
  • [4] Arabic Natural Language Processing Laboratory serving Islamic Sciences
    Najeeb, Moath M.
    Abdelkader, Abdelkarim A.
    Al-Zghoul, Musab B.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (03) : 114 - 117
  • [5] Phishing Detection in Arabic SMS Messages using Natural Language Processing
    Ibrahim, Alya
    Alyousef, Sarah
    Alajmi, Hayfa
    Aldossari, Rana
    Masmoudi, Fatma
    PROCEEDINGS 2024 SEVENTH INTERNATIONAL WOMEN IN DATA SCIENCE CONFERENCE AT PRINCE SULTAN UNIVERSITY, WIDS-PSU 2024, 2024, : 141 - 146
  • [6] Detecting Islamic Radicalism Arabic Tweets Using Natural Language Processing
    Mursi, Khalid T.
    Alahmadi, Mohammad D.
    Alsubaei, Faisal S.
    Alghamdi, Ahmed S.
    IEEE ACCESS, 2022, 10 : 72526 - 72534
  • [7] Low-level natural language technique for arabic text processing
    Awajan, A
    COMPUTERS AND THEIR APPLICATIONS, 2001, : 387 - 390
  • [8] A comprehensive review on Arabic word sense disambiguation for natural language processing applications
    Kaddoura, Sanaa
    Ahmed, Rowanda D.
    Hemanth, Jude D.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 12 (04)
  • [9] An Arabic natural language interface for querying relational databases based on natural language processing and graph theory methods
    Bais H.
    Machkour M.
    Koutti L.
    Bais, Hanane (baishanan@gmail.com), 2018, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (10) : 155 - 165
  • [10] Text-To-Speech technology for Arabic language learners
    Oumaima, Zine
    Abdelouafi, Meziane
    Meryem, El Hadi
    2018 IEEE 5TH INTERNATIONAL CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE CIST'18), 2018, : 432 - 436