Raman spectroscopy reveals phenotype switches in breast cancer metastasis

被引:23
作者
Paidi, Santosh Kumar [1 ,12 ]
Troncoso, Joel Rodriguez [2 ]
Harper, Mason G. [3 ]
Liu, Zhenhui [1 ]
Nguyen, Khue G. [4 ,5 ]
Ravindranathan, Sruthi [6 ]
Rebello, Lisa [7 ]
Lee, David E. [8 ,13 ]
Ivers, Jesse D.
Zaharoff, David A. [4 ,5 ]
Rajaram, Narasimhan [2 ,9 ]
Barman, Ishan [1 ,10 ,11 ]
机构
[1] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
[2] Univ Arkansas, Dept Biomed Engn, Fayetteville, AR 72701 USA
[3] Univ Arkansas Med Sci, Little Rock, AR 72205 USA
[4] Univ N Carolina, Joint Dept Biomed Engn, Raleigh, NC 27695 USA
[5] North Carolina State Univ, Raleigh, NC 27695 USA
[6] Emory Univ, Dept Hematol & Oncol, Atlanta, GA 30322 USA
[7] Univ Arkansas, Cell & Mol Biol Program, Fayetteville, AR 72701 USA
[8] Univ Arkansas, Dept Hlth Human Performance & Recreat, Fayetteville, AR 72701 USA
[9] Univ Arkansas Med Sci, Winthrop P Rockefeller Canc Inst, Little Rock, AR 72205 USA
[10] Johns Hopkins Univ, Russell H Morgan Dept Radiol & Radiol Sci, Sch Med, Baltimore, MD 21205 USA
[11] Johns Hopkins Univ, Dept Oncol, Baltimore, MD 21287 USA
[12] Univ Calif Berkeley, Sch Optometry, Berkeley, CA 94720 USA
[13] Duke Univ, Duke Mol Physiol Inst, 300 N Duke St, Durham, NC 27701 USA
关键词
Raman spectroscopy; Cancer metastasis; Random forests; Phenotype switch; TWIST; LABEL-FREE; MESENCHYMAL TRANSITION; LESIONS; CELLS; IDENTIFICATION; METABOLISM; PLAYS;
D O I
10.7150/thno.74002
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The accurate analytical characterization of metastatic phenotype at primary tumor diagnosis and its evolution with time are critical for controlling metastatic progression of cancer. Here, we report a label-free optical strategy using Raman spectroscopy and machine learning to identify distinct metastatic phenotypes observed in tumors formed by isogenic murine breast cancer cell lines of progressively increasing metastatic propensities. Methods: We employed the 4T1 isogenic panel of murine breast cancer cells to grow tumors of varying metastatic potential and acquired label-free spectra using a fiber probe-based portable Raman spectroscopy system. We used MCR-ALS and random forests classifiers to identify putative spectral markers and predict metastatic phenotype of tumors based on their optical spectra. We also used tumors derived from 4T1 cells silenced for the expression of TWIST, FOXC2 and CXCR3 genes to assess their Results: The MCR-ALS spectral decomposition showed consistent differences in the contribution of components that resembled collagen and lipids between the non-metastatic 67NR tumors and the metastatic tumors formed by FARN, 4T07, and 4T1 cells. Our Raman spectra-based random forest analysis provided evidence that machine learning models built on spectral data can allow the accurate identification of metastatic phenotype of independent test tumors. By silencing genes critical for metastasis in highly metastatic cell lines, we showed that the random forest classifiers provided predictions consistent with the observed phenotypic switch of the resultant tumors towards lower metastatic potential. Furthermore, the spectral assessment of lipid and collagen content of these tumors evaluate metastatic risk during primary tumor biopsies in clinical patients.
引用
收藏
页码:5351 / 5363
页数:13
相关论文
共 51 条
[1]   Emerging optical spectroscopy techniques for biomedical applications-A brief review of recent progress [J].
Ahn, Heesang ;
Song, Hyerin ;
Shin, Dong-Myeong ;
Kim, Kyujung ;
Choi, Jong-ryul .
APPLIED SPECTROSCOPY REVIEWS, 2018, 53 (2-4) :264-278
[2]  
ASLAKSON CJ, 1992, CANCER RES, V52, P1399
[3]   Application of Raman Spectroscopy to Identify Microcalcifications and Underlying Breast Lesions at Stereotactic Core Needle Biopsy [J].
Barman, Ishan ;
Dingari, Narahara Chari ;
Saha, Anushree ;
McGee, Sasha ;
Galindo, Luis H. ;
Liu, Wendy ;
Plecha, Donna ;
Klein, Nina ;
Dasari, Ramachandra Rao ;
Fitzmaurice, Maryann .
CANCER RESEARCH, 2013, 73 (11) :3206-3215
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Biophysical isolation and identification of circulating tumor cells [J].
Che, James ;
Yu, Victor ;
Garon, Edward B. ;
Goldman, Jonathan W. ;
Di Carlo, Dino .
LAB ON A CHIP, 2017, 17 (08) :1452-1461
[6]   Cellular Fatty Acid Metabolism and Cancer [J].
Currie, Erin ;
Schulze, Almut ;
Zechner, Rudolf ;
Walther, Tobias C. ;
Farese, Robert V., Jr. .
CELL METABOLISM, 2013, 18 (02) :153-161
[7]   Analysis of Circulating Tumor DNA to Monitor Metastatic Breast Cancer [J].
Dawson, Sarah-Jane ;
Tsui, Dana W. Y. ;
Murtaza, Muhammed ;
Biggs, Heather ;
Rueda, Oscar M. ;
Chin, Suet-Feung ;
Dunning, Mark J. ;
Gale, Davina ;
Forshew, Tim ;
Mahler-Araujo, Betania ;
Rajan, Sabrina ;
Humphray, Sean ;
Becq, Jennifer ;
Halsall, David ;
Wallis, Matthew ;
Bentley, David ;
Caldas, Carlos ;
Rosenfeld, Nitzan .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 368 (13) :1199-1209
[8]   Collagen as a double-edged sword in tumor progression [J].
Fang, Min ;
Yuan, Jingping ;
Peng, Chunwei ;
Li, Yan .
TUMOR BIOLOGY, 2014, 35 (04) :2871-2882
[9]   Vibrational spectroscopic image analysis of biological material using multivariate curve resolution-alternating least squares (MCR-ALS) [J].
Felten, Judith ;
Hall, Hardy ;
Jaumot, Joaquim ;
Tauler, Roma ;
de Juan, Anna ;
Gorzsas, Andras .
NATURE PROTOCOLS, 2015, 10 (02) :217-240
[10]   Development of a highly sensitive liquid biopsy platform to detect clinically-relevant cancer mutations at low allele fractions in cell-free DNA [J].
Gale, Davina ;
Lawson, Andrew R. J. ;
Howarth, Karen ;
Madi, Mikidache ;
Durham, Bradley ;
Smalley, Sarah ;
Calaway, John ;
Blais, Shannon ;
Jones, Greg ;
Clark, James ;
Dimitrov, Peter ;
Pugh, Michelle ;
Woodhouse, Samuel ;
Epstein, Michael ;
Fernandez-Gonzalez, Ana ;
Whale, Alexandra S. ;
Huggett, Jim F. ;
Foy, Carole A. ;
Jones, Gerwyn M. ;
Raveh-Amit, Hadas ;
Schmitt, Karin ;
Devonshire, Alison ;
Green, Emma ;
Forshew, Tim ;
Plagnol, Vincent ;
Rosenfeld, Nitzan .
PLOS ONE, 2018, 13 (03)