Parallel Batch-Dynamic Graph Connectivity

被引:27
作者
Acar, Umut A. [1 ]
Anderson, Daniel [1 ]
Blelloch, Guy E. [1 ]
Dhulipala, Laxman [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
来源
SPAA'19: PROCEEDINGS OF THE 31ST ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURESS, 2019 | 2019年
关键词
COMPONENTS; ALGORITHMS;
D O I
10.1145/3323165.3323196
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study batch parallel algorithms for the dynamic connectivity problem, a fundamental problem that has received considerable attention in the sequential setting. The best sequential algorithm for dynamic connectivity is the elegant level-set algorithm of Holm, de Lichtenberg and Thorup (HDT), which achieves O(1g(2) n) amortized time per edge insertion or deletion, and O(1g n) time per query. We design a parallel batch-dynamic connectivity algorithm that is work-efficient with respect to the HDT algorithm for small batch sizes, and is asymptotically faster when the average batch size is sufficiently large. Given a sequence of batched updates, where A is the average batch size of all deletions, our algorithm achieves O(1g n lg(1 + n/A)) expected amortized work per edge insertion and deletion and O (1g(3) n) depth w.h.p. Our algorithm answers a batch of k connectivity queries in O(k lg(1 + n/ k)) expected work and O(1g n) depth w.h.p. To the best of our knowledge, our algorithm is the first parallel batch-dynamic algorithm for connectivity.
引用
收藏
页码:381 / 392
页数:12
相关论文
共 69 条
[1]  
Acar U. A., 2017, ACM S PAR ALG ARCH S
[2]  
Acar U. A., 2011, ACM S PAR ALG ARCH S
[3]  
Acar U. A., 2019, ARXIV190308794
[4]  
Agrawal K., 2018, ACM S PAR ALG ARCH S
[5]  
Agrawal Kunal, 2014, ACM S PAR ALG ARCH S
[6]  
Ahn Kook Jin, 2012, SODA, P459, DOI DOI 10.1137/1.9781611973099.40
[7]  
Akhremtsev Y., 2016, IEEE INT C HIGH PERF
[8]  
Andoni A., 2018, IEEE S FDN COMP SCI
[9]  
[Anonymous], 1992, An introduction to parallel algorithms
[10]  
[Anonymous], J ALGORITHMS