Numerical verification method for positive solutions of elliptic problems

被引:3
作者
Tanaka, Kazuaki [1 ]
机构
[1] Waseda Univ, Inst Math Sci, Shinjyuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
关键词
Computer-assisted proof; Elliptic problems; Newton's method; Numerical verification; Positive solutions; Verified numerical computation; CONVERGENCE; UNIQUENESS; EXISTENCE; DOMAINS;
D O I
10.1016/j.cam.2019.112647
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to propose methods for verifying the positivity of a weak solution u of an elliptic problem assuming H-0(1)-error estimation parallel to u - (u) over cap parallel to(H01) <= rho given some numerical approximation (u) over cap and an explicit error bound rho. We provide a sufficient condition for the solution to be positive and analyze the range of application of our method for elliptic problems with polynomial nonlinearities. We present numerical examples where our method is applied to some important problems. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 27 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]  
[Anonymous], 1999, Developments in Reliable Computing, DOI DOI 10.1007/978-94-017-1247-7
[3]  
[Anonymous], 2008, CONVERGENCE APPL NEW, DOI DOI 10.1007/978-0-387-72743-1
[4]   Weaker conditions for the convergence of Newton's method [J].
Argyros, Ioannis K. ;
Hilout, Said .
JOURNAL OF COMPLEXITY, 2012, 28 (03) :364-387
[5]   Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle [J].
Damascelli, L ;
Grossi, M ;
Pacella, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (05) :631-652
[6]   Morse index and uniqueness of positive solutions of the Lane-Emden problem in planar domains [J].
De Marchis, F. ;
Grossi, M. ;
Ianni, I. ;
Pacella, F. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 128 :339-378
[7]   AFFINE INVARIANT CONVERGENCE THEOREMS FOR NEWTONS METHOD AND EXTENSIONS TO RELATED METHODS [J].
DEUFLHARD, P ;
HEINDL, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) :1-10
[8]   On a maximum principle for weak solutions of some quasi-linear elliptic equations [J].
Drabek, Pavel .
APPLIED MATHEMATICS LETTERS, 2009, 22 (10) :1567-1570
[9]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[10]   Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus [J].
Gladiali, Francesca ;
Grossi, Massimo ;
Pacella, Filomena ;
Srikanth, P. N. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 40 (3-4) :295-317