Mixed models are commonly used for the analysis of small area estimation. In particular, small area estimation has been extensively studied under linear mixed models. Recently, small area estimation under the linear mixed model with penalized spline (P-spline) regression model, for fixed part of the model, has been proposed. However, in practice there are many situations that we have counts or proportions in small areas; for example a dataset on the number of asthma physician visits in small areas in Manitoba. In particular, the covariates age, genetic, environmental factors, among other covariates seem to predict asthma physician visits, however, these relationships may not be linear (see Section 5). In this paper, small area estimation under generalized linear mixed models using P-spline regression models is proposed to cover Normal and non-Normal responses. In particular, the empirical best predictor of small area parameters with corresponding prediction intervals are studied. The performance of the proposed approach is evaluated through simulation studies and also by a real dataset. The Canadian Journal of Statistics 43: 82-96; 2015 (c) 2015 Statistical Society of Canada Resume Lorsqu'il est question d'estimation sur des petits domaines, les modeles mixtes sont couramment utilises, et en particulier les modeles lineaires mixtes dont l'usage dans ce contexte a ete largement etudie. Une approche recemment proposee utilise d'ailleurs un modele lineaire mixte dont la partie fixe est un modele de regression base sur des splines penalisees. En pratique, il arrive couramment que les valeurs observees sur les petits domaines soient des variables discretes ou des proportions, notamment dans un jeu de donnees portant sur le nombre de visites chez le medecin pour l'asthme dans differentes regions du Manitoba. Les auteurs constatent que des variables portant sur l'age, la genetique et les facteurs environnementaux semblent de bons predicteurs du nombre de visites chez le medecin, mais que les relations associees a ces variables ne sont pas necessairement lineaires. Les auteurs proposent de proceder a l'estimation pour des petits domaines a l'aide d'un modele lineaire mixte generalise base sur une regression par splines penalisees s'adaptant a une variable reponse normale ou non. Ils etudient les meilleurs estimateurs empiriques pour petits domaines ainsi que les intervalles de prevision leur etant associes. Finalement, ils evaluent la performance de la methode proposee a l'aide de simulations et de l'analyse d'un jeu de donnees reelles. La revue canadienne de statistique 43: 82-96; 2015 (c) 2015 Societe statistique du Canada