Adaptive Multiscale Superpixel Embedding Convolutional Neural Network for Land Use Classification

被引:0
作者
Zhang, Huaizhong [1 ]
Altham, Callum [1 ]
Trovati, Marcello [1 ]
Zhang, Ce [1 ]
Rolland, Iain [1 ]
Lawal, Lanre [1 ]
Wegbu, Dozien [1 ]
Ajienka, Nemitari [1 ]
机构
[1] Edge Hill Univ, Dept Comp Sci, Ormskirk LP39 4QP, England
基金
英国科研创新办公室;
关键词
Convolutional neural networks; Adaptation models; Training; Remote sensing; Adaptive systems; Feature extraction; Data models; Convolutional neural network (CNN); land use (LU) classification; superpixel embedding CNN; very fine spatial resolution remotely sensed imagery; IMAGERY;
D O I
10.1109/JSTARS.2022.3203234
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Currently, a large number of remote sensing images with different resolutions are available for Earth observation and land monitoring, which are inevitably demanding intelligent analysis techniques for accurately identifying and classifying land use (LU). This article proposes an adaptive multiscale superpixel embedding convolutional neural network architecture (AMUSE-CNN) for tackling LU classification. Initially, the images are parsed via the superpixel representation so that the object-based analysis (via a superpixel embedding convolutional neural network scheme) can be carried out with the pixel context and neighborhood information. Then, a multiscale convolutional neural network (MS-CNN) is proposed to classify the superpixel-based images by identifying object features across a variety of scales simultaneously, in which multiple window sizes are used to fit to the various geometries of different LU classes. Furthermore, a proposed adaptive strategy is applied to best exert the classification capability of the MS-CNN. Subsequently, two modules are developed to fully implement the AMUSE-CNN architecture. More specifically, Module I is to determine the most suitable classes for each window size (scale) by applying majority voting to a series of MS-CNNs Module II carries out the classification of the classes identified in Module I for the given scale used in the MS-CNN and, therefore, complete the LU classification of the entire classes. The proposed AMUSE-CNN architecture is both quantitatively and qualitatively validated using remote sensing data collected from two cities, Kano and Lagos in Nigeria, due to the spatially complex LU distribution. Experimental results show the superior performance of our approach against several state-of-the-art techniques.
引用
收藏
页码:7631 / 7642
页数:12
相关论文
共 50 条
  • [31] A New Multiscale Multiattention Convolutional Neural Network for Fine-Grained Surface Defect Detection
    Wen, Long
    Zhang, Yang
    Gao, Liang
    Li, Xinyu
    Li, Min
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [32] Weighted Feature Fusion of Convolutional Neural Network and Graph Attention Network for Hyperspectral Image Classification
    Dong, Yanni
    Liu, Quanwei
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1559 - 1572
  • [33] Land Use Classification of the Deep Convolutional Neural Network Method Reducing the Loss of Spatial Features
    Yao, Xuedong
    Yang, Hui
    Wu, Yanlan
    Wu, Penghai
    Wang, Biao
    Zhou, Xinxin
    Wang, Shuai
    SENSORS, 2019, 19 (12)
  • [34] Adaptive Pruning of Transfer Learned Deep Convolutional Neural Network for Classification of Cervical Pap Smear Images
    Wang, Pin
    Wang, Jiaxin
    Li, Yongming
    Li, Linyu
    Zhang, Hehua
    IEEE ACCESS, 2020, 8 : 50674 - 50683
  • [35] Convolutional Neural Networks With Class-Driven Loss for Multiscale VHR Remote Sensing Image Classification
    Shi, Cheng
    Fang, Li
    Shen, Huifang
    IEEE ACCESS, 2020, 8 : 149162 - 149175
  • [36] Classification of a Ferry Network Activity Based on ES Sensors and Convolutional Neural Networks
    Salim, Omar
    Lynar, Timothy
    IEEE SENSORS JOURNAL, 2023, 23 (01) : 775 - 786
  • [37] Wideband Adaptive Beamforming via Multiscale Channel Attention Convolutional Neural Network
    Liu, Fulai
    Yang, Jinwei
    Yu, Qiuying
    Ge, Junjie
    Du, Ruiyan
    Zhang, Aiyi
    IEEE SENSORS JOURNAL, 2024, 24 (18) : 29323 - 29330
  • [38] Heterogeneous Transfer Learning for Hyperspectral Image Classification Based on Convolutional Neural Network
    He, Xin
    Chen, Yushi
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3246 - 3263
  • [39] Adaptive Distance-Based Pooling in Convolutional Neural Networks for Audio Event Classification
    Martin-Morato, Irene
    Cobos, Maximo
    Ferri, Francesc J.
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2020, 28 (28) : 1925 - 1935
  • [40] Multitemporal Relearning With Convolutional LSTM Models for Land Use Classification
    Zhu, Yue
    Geiss, Christian
    So, Emily
    Jin, Ying
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3251 - 3265