Adaptive Multiscale Superpixel Embedding Convolutional Neural Network for Land Use Classification

被引:0
作者
Zhang, Huaizhong [1 ]
Altham, Callum [1 ]
Trovati, Marcello [1 ]
Zhang, Ce [1 ]
Rolland, Iain [1 ]
Lawal, Lanre [1 ]
Wegbu, Dozien [1 ]
Ajienka, Nemitari [1 ]
机构
[1] Edge Hill Univ, Dept Comp Sci, Ormskirk LP39 4QP, England
基金
英国科研创新办公室;
关键词
Convolutional neural networks; Adaptation models; Training; Remote sensing; Adaptive systems; Feature extraction; Data models; Convolutional neural network (CNN); land use (LU) classification; superpixel embedding CNN; very fine spatial resolution remotely sensed imagery; IMAGERY;
D O I
10.1109/JSTARS.2022.3203234
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Currently, a large number of remote sensing images with different resolutions are available for Earth observation and land monitoring, which are inevitably demanding intelligent analysis techniques for accurately identifying and classifying land use (LU). This article proposes an adaptive multiscale superpixel embedding convolutional neural network architecture (AMUSE-CNN) for tackling LU classification. Initially, the images are parsed via the superpixel representation so that the object-based analysis (via a superpixel embedding convolutional neural network scheme) can be carried out with the pixel context and neighborhood information. Then, a multiscale convolutional neural network (MS-CNN) is proposed to classify the superpixel-based images by identifying object features across a variety of scales simultaneously, in which multiple window sizes are used to fit to the various geometries of different LU classes. Furthermore, a proposed adaptive strategy is applied to best exert the classification capability of the MS-CNN. Subsequently, two modules are developed to fully implement the AMUSE-CNN architecture. More specifically, Module I is to determine the most suitable classes for each window size (scale) by applying majority voting to a series of MS-CNNs Module II carries out the classification of the classes identified in Module I for the given scale used in the MS-CNN and, therefore, complete the LU classification of the entire classes. The proposed AMUSE-CNN architecture is both quantitatively and qualitatively validated using remote sensing data collected from two cities, Kano and Lagos in Nigeria, due to the spatially complex LU distribution. Experimental results show the superior performance of our approach against several state-of-the-art techniques.
引用
收藏
页码:7631 / 7642
页数:12
相关论文
共 50 条
  • [1] Adaptive Residual Convolutional Neural Network for Hyperspectral Image Classification
    Huang, Hong
    Pu, Chunyu
    Li, Yuan
    Duan, Yule
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 2520 - 2531
  • [2] Structure-Adaptive Convolutional Neural Network for Hyperspectral Image Classification
    Jia, Sen
    Bi, Dongsheng
    Liao, Jianhui
    Jiang, Shuguo
    Xu, Meng
    Zhang, Shuyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [3] PolSAR Image Classification With Multiscale Superpixel-Based Graph Convolutional Network
    Cheng, Jianda
    Zhang, Fan
    Xiang, Deliang
    Yin, Qiang
    Zhou, Yongsheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Attention Multibranch Convolutional Neural Network for Hyperspectral Image Classification Based on Adaptive Region Search
    Feng, Jie
    Wu, Xiande
    Shang, Ronghua
    Sui, Chenhong
    Li, Jie
    Jiao, Licheng
    Zhang, Xiangrong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 5054 - 5070
  • [5] Comparison of land use classification based on convolutional neural network
    Li, Mengyao
    Wang, Liuming
    Wang, Junxiao
    Li, Xingong
    She, Jiangfeng
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (01)
  • [6] Land Use Classification of High-Resolution Multispectral Satellite Images With Fine-Grained Multiscale Networks and Superpixel Postprocessing
    Ma, Yaobin
    Deng, Xiaohua
    Wei, Jingbo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 3264 - 3278
  • [7] Further Exploring Convolutional Neural Networks' Potential for Land-Use Scene Classification
    Li, Boyang
    Su, Weihua
    Wu, Hang
    Li, Ruihao
    Zhang, Wenchang
    Qin, Wei
    Zhang, Shiyue
    Wei, Jiacheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (10) : 1687 - 1691
  • [8] Multiscale Multipath Ensemble Convolutional Neural Network
    Wang, Xuesong
    Bao, Achun
    Lv, Enhui
    Cheng, Yuhu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (09): : 5918 - 5928
  • [9] Land use and land cover classification for change detection studies using convolutional neural network
    Pushpalatha, V.
    Mallikarjuna, P. B.
    Mahendra, H. N.
    Subramoniam, S. Rama
    Mallikarjunaswamy, S.
    APPLIED COMPUTING AND GEOSCIENCES, 2025, 25
  • [10] Statistical Convolutional Neural Network for Land-Cover Classification From SAR Images
    Liu, Xinlong
    He, Chu
    Zhang, Qingyi
    Liao, Mingsheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (09) : 1548 - 1552