Combined effects of predicted climate and land use changes on future hydrological droughts in the Luanhe River basin, China

被引:12
作者
Chen, Xu [1 ]
Han, Ruiguang [1 ]
Feng, Ping [2 ]
Wang, Yongjie [3 ]
机构
[1] MWR, Hydrol Bur Haihe River Water Conservancy Commiss, 15 Longtan Rd, Tianjin 300170, Peoples R China
[2] Tianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Infrastruct Construct Dept, Tianjin 300072, Peoples R China
关键词
Climate change; Land-use change; Future hydrological drought; SDSM; CA-Markov; SWAT model; DOWNSCALING EXTREMES; BIAS CORRECTION; USE/LAND COVER; CHANGE IMPACT; CARBON FLUX; PRECIPITATION; SCENARIOS; CATCHMENT; EROSION; RUNOFF;
D O I
10.1007/s11069-021-04992-3
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Both climate and land-use changes can influence drought in different ways. Thus, to predict future drought conditions, hydrological simulations, as an ideal means, can be used to account for both projected climate change and projected land-use change. In this study, projected climate and land-use changes were integrated with the Soil and Water Assessment Tool (SWAT) model to estimate the combined impact of climate and land-use projections on hydrological droughts in the Lutheran River basin. We showed that the measured runoff and the remote sensing inversion of soil water content were simultaneously used to validate the model to ensure the reliability of the model parameters. Following calibration and validation, the SWAT model was forced with downscaled precipitation and temperature outputs from a suite of nine global climate models (GCMs) based on CMIP5, corresponding to three different representative concentration pathways (RCP2.6, RCP4.5 and RCP8.5) for three distinct time periods: 2011-2040, 2041-2070 and 2071-2100, referred to as early century, mid-century and late-century, respectively, and the land use predicted by the CA-Markov model in the same future periods. Hydrological droughts were quantified using the standardized runoff index (SRI). Compared to the baseline scenario (1961-1990), mild drought occurred more frequently during the next three periods (except for the 2080s under the RCP2.6 emissions scenario). Under the RCP8.5 emissions scenario, the probability of severe drought or above occurring in the 2080s increased, the duration was prolonged, and the severity increased. Under the RCP2.6 scenario, the upper central region of the Luanhe River in the 2020s and upper reaches of the Luanhe River in the 2080s were more likely to experience extreme drought events. Under the RCP8.5 scenario, the middle and lower Luanhe River in the 2080s was more likely to experience these conditions.
引用
收藏
页码:1305 / 1337
页数:33
相关论文
共 50 条
  • [21] Hydrological Responses to Land Use/Cover Changes in the Olifants Basin, South Africa
    Gyamfi, Charles
    Ndambuki, Julius M.
    Salim, Ramadhan W.
    WATER, 2016, 8 (12)
  • [22] LAND USE AND CLIMATE CHANGES AND THEIR IMPACTS ON RUNOFF IN THE YARLUNG ZANGBO RIVER BASIN, CHINA
    Liu, Z.
    Yao, Z.
    Huang, H.
    Wu, S.
    Liu, G.
    LAND DEGRADATION & DEVELOPMENT, 2014, 25 (03) : 203 - 215
  • [23] The Impact of the Changes in Climate, Land Use and Direct Human Activity on the Discharge in Qingshui River Basin, China
    Zhang, Mengxue
    Stodolak, Radoslaw
    Xia, Jianxin
    WATER, 2021, 13 (21)
  • [24] Quantifying both climate and land use/cover changes on runoff variation in Han River basin, China
    Tian, Jing
    Guo, Shenglian
    Yin, Jiabo
    Pan, Zhengke
    Xiong, Feng
    He, Shaokun
    FRONTIERS OF EARTH SCIENCE, 2022, 16 (03) : 711 - 733
  • [25] Effects of land use and land cover change under shared socioeconomic pathways on future climate in the Yellow River basin, China
    Ru, Xutong
    Qiao, Longxin
    Zhang, Haopeng
    Bai, Tianqi
    Min, Ruiqi
    Wang, Yaobin
    Wang, Qianfeng
    Song, Hongquan
    URBAN CLIMATE, 2024, 55
  • [26] Investigating the impact of climate and land-use land cover changes on hydrological predictions over the Krishna river basin under present and future scenarios
    Tirupathi, Chanapathi
    Shashidhar, Thatikonda
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 721 (721)
  • [27] Assessment of land use changes in the Verde River basin using two hydrological models
    Carvalho, Vinicius S. O.
    da Cunha, Zandra A.
    Alvarenga, Livia A.
    Beskow, Samuel
    de Mello, Carlos R.
    Martins, Minella A.
    de Oliveira, Conceicao de M. M.
    JOURNAL OF SOUTH AMERICAN EARTH SCIENCES, 2022, 118
  • [28] Hydrological Responses to Climate and Land Use Changes in a Watershed of the Loess Plateau, China
    Yan, Rui
    Cai, Yanpeng
    Li, Chunhui
    Wang, Xuan
    Liu, Qiang
    SUSTAINABILITY, 2019, 11 (05):
  • [29] Hydrological impacts of future climate and land use/cover changes in the Lower Mekong Basin: a case study of the Srepok River Basin, Vietnam
    Pham Thi Thao Nhi
    Dao Nguyen Khoi
    Nguyen Thi Thuy Trang
    Tran Van Ty
    Shibo Fang
    Environmental Monitoring and Assessment, 2022, 194
  • [30] Landscape Ecological Risk Responses to Land Use Change in the Luanhe River Basin, China
    Li, Ying
    Huang, Suiliang
    SUSTAINABILITY, 2015, 7 (12) : 16631 - 16652