PATTERN SELECTION IN AN EPIDEMIC MODEL WITH SELF AND CROSS DIFFUSION

被引:75
作者
Wang, Weiming [1 ,2 ]
Lin, Yezhi [1 ]
Wang, Hailing [3 ]
Liu, Houye [1 ]
Tan, Yongji [2 ]
机构
[1] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou 325035, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
Epidemic Model; Amplitude Equations; Cross-Diffusion; AMPLITUDE EQUATIONS; HBV MODEL; DYNAMICS; BIFURCATION;
D O I
10.1142/S0218339011003555
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we have presented Turing pattern selection in a spatial epidemic model with zero-flux boundary conditions, for which we have given a general survey of Hopf and Turing bifurcations, and have derived amplitude equations for the excited modes. Furthermore, we present novel numerical evidence of typical Turing patterns, and find that the model dynamics exhibits complex pattern replication: on increasing the control parameter r, the sequence "H-0-hexagons -> H-0-hexagon-stripe mixtures -> stripes -> H pi-hexagon-stripe mixtures -> H-pi-hexagons" is observed. This may enrich the research of the pattern formation in diffusive epidemic models.
引用
收藏
页码:19 / 31
页数:13
相关论文
共 28 条
[1]   The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb [J].
Alber, Mark ;
Glimm, Tilmann ;
Hentschel, H. G. E. ;
Kazmierczak, Bogdan ;
Zhang, Yong-Tao ;
Zhu, Jianfeng ;
Newman, Stuart A. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (02) :460-483
[2]   Pattern formation in three-dimensional reaction-diffusion systems [J].
Callahan, TK ;
Knobloch, E .
PHYSICA D, 1999, 132 (03) :339-362
[3]   The characteristics of epidemics and invasions with thresholds [J].
Cruickshank, I ;
Gurney, WSC ;
Veitch, AR .
THEORETICAL POPULATION BIOLOGY, 1999, 56 (03) :279-292
[4]   Dynamics of Turing pattern monolayers close to onset [J].
Dufiet, V ;
Boissonade, J .
PHYSICAL REVIEW E, 1996, 53 (05) :4883-4892
[5]   Spatial models of virus-immune dynamics [J].
Funk, GA ;
Jansen, VAA ;
Bonhoeffer, S ;
Killingback, T .
JOURNAL OF THEORETICAL BIOLOGY, 2005, 233 (02) :221-236
[6]   PATTERN-FORMATION IN THE PRESENCE OF SYMMETRIES [J].
GUNARATNE, GH ;
OUYANG, Q ;
SWINNEY, HL .
PHYSICAL REVIEW E, 1994, 50 (04) :2802-2820
[7]   Systematic derivation of amplitude equations and normal forms for dynamical systems [J].
Ipsen, M ;
Hynne, F ;
Sorensen, PG .
CHAOS, 1998, 8 (04) :834-852
[8]   Amplitude equations for reaction-diffusion systems with a Hopf bifurcation and slow real modes [J].
Ipsen, M ;
Hynne, F ;
Sorensen, PG .
PHYSICA D, 2000, 136 (1-2) :66-92
[9]  
KERNER EDWARD H., 1959, BULL MATH BIOPHYS, V21, P217, DOI 10.1007/BF02476361
[10]   Heteroclinic bifurcation in the Michaelis-Menten-type ratio-dependent predator-prey system [J].
Li, Bingtuan ;
Kuang, Yang .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (05) :1453-1464