Sequential versus concurrent gradient-based optimal algorithms for the robust control of quantum systems

被引:1
作者
Dionis, E. [1 ]
Sugny, D. [1 ]
机构
[1] Univ Bourgogne Franche Comte, CNRS UMR 6303, Lab Interdisciplinaire Carnot Bourgogne, BP 47870, F-21078 Dijon, France
关键词
optimal control theory; gradient algorithm; quantum control; robust control; two-level quantum systems; Bose-Einstein condensates; BROAD-BAND EXCITATION; LIMITS; INVERSION;
D O I
10.1088/1361-6455/ac884b
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate two different formulations of gradient-based algorithms for the robust control of quantum systems. We consider the simultaneous control of an ensemble of systems which differ by the value of a constant Hamiltonian parameter. The two versions of the iterative algorithm, called concurrent and sequential, correspond respectively to a joint update of the control at each iteration for all the elements of the ensemble or to a successive correction of the control in which the control law is different for each system. We analyze the relative efficiency of the two optimization procedures on two benchmark examples, namely the control of two-level quantum systems and Bose-Einstein condensates in a one-dimensional optical lattice. Intensive numerical simulations show the superiority of the sequential-update formulation with respect to the concurrent one for a similar numerical cost.
引用
收藏
页数:8
相关论文
共 65 条
[1]   Optimal control of the transport of Bose-Einstein condensates with atom chips [J].
Amri, S. ;
Corgier, R. ;
Sugny, D. ;
Rasel, E. M. ;
Gaaloul, N. ;
Charron, E. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[2]   Accurate and Robust Unitary Transformations of a High-Dimensional Quantum System [J].
Anderson, B. E. ;
Sosa-Martinez, H. ;
Riofrio, C. A. ;
Deutsch, Ivan H. ;
Jessen, Poul S. .
PHYSICAL REVIEW LETTERS, 2015, 114 (24)
[3]   Ensemble Control of Bloch Equations [J].
不详 .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (03) :528-536
[4]  
[Anonymous], 1974, MATH THEORY OPTIMAL
[5]   Introduction to the Pontryagin Maximum Principle for Quantum Optimal Control [J].
Boscain, U. ;
Sigalotti, M. ;
Sugny, D. .
PRX QUANTUM, 2021, 2 (03)
[6]   Control of quantum phenomena: past, present and future [J].
Brif, Constantin ;
Chakrabarti, Raj ;
Rabitz, Herschel .
NEW JOURNAL OF PHYSICS, 2010, 12
[7]   Geometrical Formalism for Dynamically Corrected Gates in Multiqubit Systems [J].
Buterakos, Donovan ;
Das Sarma, Sankar ;
Barnes, Edwin .
PRX QUANTUM, 2021, 2 (01)
[8]   Sampling-based learning control of inhomogeneous quantum ensembles [J].
Chen, Chunlin ;
Dong, Daoyi ;
Long, Ruixing ;
Petersen, Ian R. ;
Rabitz, Herschel A. .
PHYSICAL REVIEW A, 2014, 89 (02)
[9]   Shortcut to Adiabatic Passage in Two- and Three-Level Atoms [J].
Chen, Xi ;
Lizuain, I. ;
Ruschhaupt, A. ;
Guery-Odelin, D. ;
Muga, J. G. .
PHYSICAL REVIEW LETTERS, 2010, 105 (12)
[10]   Goals and opportunities in quantum simulation [J].
Cirac, J. Ignacio ;
Zoller, Peter .
NATURE PHYSICS, 2012, 8 (04) :264-266