Characterization and workplace exposure assessment of nanomaterial released from a carbon nanotube-enabled anti-corrosive coating

被引:11
作者
Brame, Jonathon A. [1 ]
Alberts, Erik M. [2 ]
Schubauer-Berigan, Mary K. [3 ]
Dunn, Kevin H. [4 ]
Babik, Kelsey R. [3 ]
Barnes, Eftihia [5 ]
Moser, Robert [5 ]
Poda, Aimee R. [1 ]
Kennedy, Alan J. [1 ]
机构
[1] US Army, Engineer Res & Dev Ctr, Environm Lab, Natick, MA 01760 USA
[2] HX5 LLC, Ft Walton Beach, FL USA
[3] NIOSH, Div Surveillance Hazard Evaluat & Field Studies, Washington, DC USA
[4] NIOSH, Div Appl Res & Technol, Washington, DC USA
[5] US Army, Engineer Res & Dev Ctr, Geotech & Struct Lab, Natick, MA 01760 USA
关键词
Nanomaterial; Coatings; Release; Carbon nanotube; Weathering; Occupational exposure; FAST MOBILITY; OCCUPATIONAL-EXPOSURE; NANOPARTICLE EXPOSURE; TOXICITY; TIO2; CARCINOGENICITY; QUANTIFICATION; NANOTECHNOLOGY; MESOTHELIOMA; RESPONSES;
D O I
10.1016/j.impact.2018.10.002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Improvement of methods to quantify the release and characterization of engineered nanomaterials (ENMs) from nano-enabled products is essential to enhance the accuracy and usability of environmental health and safety evaluations. An anticorrosive coaling containing multi-wall carbon nanotubes (MWCNTs) was analyzed for nano-scale material and workplace exposure potential. Worker breathing zone measurements for elemental carbon (EC) and electron-microscopy-based structure counts showed negligible MWCNT exposure to workers during laboratory and spray-painting operations over the course of two 8-hour shifts (arithmetic mean inhalable EC and electron microscopy structure count concentrations were 6.47 mu g/m(3) and 0.084 structures/cm(3) respectively). UV weathering prior to abrasion testing increased the nano-size fraction of released material as measured by a fast mobility particle sizer (FMPS) and visual inspection by SEM indicated increased presence of exposed MWCNTs embedded in the polymer matrix. However, no free MWCNTs were identified, despite evidence of MWCNTs embedded in airborne particles. TiO2, used as a pigment in the coaling and not anticipated as a candidate for nano-specific scrutiny, contained a small fraction (3.5% in number) of nano-sized constituents (< 100 nm). This work emphasizes need for rigorous characterization of additive materials to properly assess potential health hazards and to better our understanding of what qualifies as "nano".
引用
收藏
页码:58 / 68
页数:11
相关论文
共 67 条
[1]   Methodological studies for quantifying airborne release of nano- and nano-enabled materials using a fast mobility particle sizer [J].
Alberts, E. ;
Moser, R. ;
Kennedy, A. J. ;
Bednar, A. ;
Poda, A. ;
Jackson, C. ;
Brame, J. .
NANOIMPACT, 2018, 11 :92-98
[2]  
Ashley K., 2016, NIOSH MANUAL ANAL ME
[3]   TiO2 Nanoparticle Exposure and Illumination during Zebrafish Development: Mortality at Parts per Billion Concentrations [J].
Bar-Ilan, Ofek ;
Chuang, Connie C. ;
Schwahn, Denise J. ;
Yang, Sarah ;
Joshi, Sanjay ;
Pedersen, Joel A. ;
Hamers, Robert J. ;
Peterson, Richard E. ;
Heideman, Warren .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (09) :4726-4733
[4]   Exposure and Emissions Monitoring during Carbon Nanofiber Production-Part II: Polycyclic Aromatic Hydrocarbons [J].
Birch, M. Eileen .
ANNALS OF OCCUPATIONAL HYGIENE, 2011, 55 (09) :1037-1047
[5]   Exposure and Emissions Monitoring during Carbon Nanofiber Production-Part I: Elemental Carbon and Iron-Soot Aerosols [J].
Birch, M. Eileen ;
Ku, Bon-Ki ;
Evans, Douglas E. ;
Ruda-Eberenz, Toni A. .
ANNALS OF OCCUPATIONAL HYGIENE, 2011, 55 (09) :1016-1036
[6]   In Vivo Toxicity Assessment of Occupational Components of the Carbon Nanotube Life Cycle To Provide Context to Potential Health Effects [J].
Bishop, Lindsey ;
Cena, Lorenzo ;
Orandle, Marlene ;
Yanamala, Naveena ;
Dahm, Matthew M. ;
Birch, M. Eileen ;
Evans, Douglas E. ;
Kodali, Vamsi K. ;
Eye, Tracy ;
Battelli, Lori ;
Zeidler-Erdely, Patti C. ;
Casuccio, Gary ;
Bunker, Kristin ;
Lupoi, Jason S. ;
Lersch, Traci L. ;
Stefaniak, Aleksandr B. ;
Sager, Tina ;
Afshari, Aliakbar ;
Schwegler-Berry, Diane ;
Friend, Sherri ;
Kang, Jonathan ;
Siegrist, Katelyn J. ;
Mitchell, Constance A. ;
Lowry, David T. ;
Kashon, Michael L. ;
Mercer, Robert R. ;
Geraci, Charles L. ;
Schubauer-Berigan, Mary K. ;
Sargent, Linda M. ;
Erdely, Aaron .
ACS NANO, 2017, 11 (09) :8849-8863
[7]   Raman Spectra of Carbon-Based Materials (from Graphite to Carbon Black) and of Some Silicone Composites [J].
Bokobza, Liliane ;
Bruneel, Jean-Luc ;
Couzi, Michel .
C-JOURNAL OF CARBON RESEARCH, 2015, 1 (01) :77-94
[8]   Comparative assessment of nanomaterial definitions and safety evaluation considerations [J].
Boverhof, Darrell R. ;
Bramante, Christina M. ;
Butala, John H. ;
Clancy, Shaun F. ;
Lafranconi, Mark ;
West, Jay ;
Gordon, Steve C. .
REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2015, 73 (01) :137-150
[9]   EHS Testing of Products Containing Nanomaterials: What is Nano Release? [J].
Brame, Jonathon A. ;
Poda, Aimee R. ;
Kennedy, Alan J. ;
Steevens, Jeffery A. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (19) :11245-11246
[10]   Long-Fiber Carbon Nanotubes Replicate Asbestos-Induced Mesothelioma with Disruption of the Tumor Suppressor Gene Cdkn2a (Ink4a/Arf) [J].
Chernova, Tatyana ;
Murphy, Fiona A. ;
Galavotti, Sara ;
Sun, Xiao-Ming ;
Powley, Ian R. ;
Grosso, Stefano ;
Schinwald, Anja ;
Zacarias-Cabeza, Joaquin ;
Dudek, Kate M. ;
Dinsdale, David ;
Le Quesne, John ;
Bennett, Jonathan ;
Nakas, Apostolos ;
Greaves, Peter ;
Poland, Craig A. ;
Donaldson, Ken ;
Bushell, Martin ;
Willis, Anne E. ;
MacFarlane, Marion .
CURRENT BIOLOGY, 2017, 27 (21) :3302-+