Glycol assisted efficient conversion of CO2 captured from air to methanol with a heterogeneous Cu/ZnO/Al2O3 catalyst

被引:23
|
作者
Sen, Raktim
Koch, Christopher J.
Galvan, Vicente
Entesari, Nazanin
Goeppert, Alain
Prakash, G. K. Surya [1 ]
机构
[1] Univ Southern Calif, Loker Hydrocarbon Res Inst, Los Angeles, CA 90089 USA
关键词
Carbon capture and utilization; Renewable methanol economy; Direct air capture; Heterogeneous catalyst; Hydrogenation; Carbon neutral cycle; CARBON-DIOXIDE CAPTURE; LOW-TEMPERATURE SYNTHESIS; IN-SITU HYDROGENATION; OF-THE-ART; HOMOGENEOUS HYDROGENATION; DIMETHYL ETHER; AMINE; WATER; GAS; DEACTIVATION;
D O I
10.1016/j.jcou.2021.101762
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A highly effective liquid phase system for hydrogenation of CO2 to methanol using a heterogeneous Cu/ZnO/Al2O3 catalyst under batch conditions was developed. Among the screened solvents, glycols were found to have a marked promoting effect on methanol formation at a relatively low temperature range of 170-200 degrees C using molecular H-2. Relative to the solventless system, ethylene glycol enhanced the CO2 conversion values by up to 120% which is close to the calculated equilibrium limit. CH3OH yields of up to 90% were achieved. The catalyst was remarkably stable and recyclable over multiple hydrogenation cycles. Furthermore, CO2 captured by alkali hydroxides as well as amines were successfully hydrogenated to CH3OH with the Cu/ZnO/Al2O3 catalyst for the first time with >90% yields. The catalytic process and the plausible reaction pathways were evaluated by control experiments, which suggest that the hydrogenation in the presence of an alcohol proceeds through the formation of formate ester as an intermediate. Finally, the integration of direct air capture (DAC) and hydrogenation of CO2 was demonstrated efficiently as a novel methanol synthesis process using the combination of heterogeneous catalysis and air as a renewable carbon source. Such scalable processes have considerable potential for synthesis of renewable methanol in an efficient and relatively cost-effective approach.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Preparation of Cu/ZnO/Al2O3 Catalyst for CO2 Hydrogenation to Methanol by CO2 Assisted Aging
    Wang Danjun
    Tao Furong
    Zhao Huahua
    Song Huanling
    Chou Lingjun
    CHINESE JOURNAL OF CATALYSIS, 2011, 32 (09) : 1452 - 1456
  • [2] Preparation of Cu/ZnO/Al2O3 catalyst for CO 2 hydrogenation to methanol by CO2 assisted aging
    Wang, Danjun
    Tao, Furong
    Zhao, Huahua
    Song, Huanling
    Chou, Lingjun
    Chinese Journal of Catalysis, 2011, 32 (9-10): : 1452 - 1456
  • [3] Investigation on Deactivation of Cu/ZnO/Al2O3 Catalyst for CO2 Hydrogenation to Methanol
    Liang, Binglian
    Ma, Junguo
    Su, Xiong
    Yang, Chongya
    Duan, Hongmin
    Zhou, Huanwen
    Deng, Shaoliang
    Li, Lin
    Huang, Yanqiang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (21) : 9030 - 9037
  • [4] The Activity and Stability of Promoted Cu/ZnO/Al2O3 Catalyst for CO2 Hydrogenation to Methanol
    Berahim, Nor Hafizah
    Zabidi, Noor Asmawati Mohd
    Ramli, Raihan Mahirah
    Suhaimi, Nur Amirah
    PROCESSES, 2023, 11 (03)
  • [5] Development of an Efficient Methanol Production Process for Direct CO2 Hydrogenation over a Cu/ZnO/Al2O3 Catalyst
    Samimi, Fereshteh
    Rahimpour, Mohammad Reza
    Shariati, Ali
    CATALYSTS, 2017, 7 (11)
  • [6] Cu/ZnO/Al2O3 Catalyst Promoted with Amorphous MgO for Enhanced CO2 Hydrogenation to Methanol
    Chen, Hecao
    Xie, Shangzhi
    Jiang, Zhaocong
    Xu, Jing
    Zhu, Minghui
    CHEMCATCHEM, 2025,
  • [7] Effect of hydrothermal environment on Cu-ZnO/Al2O3 catalyst for hydrogenation of CO2 to methanol
    Li, Jin
    Guo, Qing
    Zhao, Xu
    Hu, Yongke
    Zhang, Shizhong
    Zhao, Yu
    Li, Shaozhong
    MOLECULAR CATALYSIS, 2023, 549
  • [8] Cu/ZnO/Al2O3 Catalyst Modulated by Zirconia with Enhanced Performance in CO2 Hydrogenation to Methanol
    Li, Hangjie
    Wang, Liang
    Gao, Xinhua
    Xiao, Feng-Shou
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (29) : 10446 - 10454
  • [9] Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not?
    Kunkes, Edward L.
    Studt, Felix
    Abild-Pedersen, Frank
    Schloegl, Robert
    Behrens, Malte
    JOURNAL OF CATALYSIS, 2015, 328 : 43 - 48
  • [10] Highly selective conversion of CO2 into ethanol on Cu/ZnO/Al2O3 catalyst with the assistance of plasma
    Zhao, Binran
    Liu, Yajun
    Zhu, Zijun
    Guo, Huaizheng
    Ma, Xiaoxun
    JOURNAL OF CO2 UTILIZATION, 2018, 24 : 34 - 39