The Effect of Accelerator Dosage on Fresh Concrete Properties and on Interlayer Strength in Shotcrete 3D Printing

被引:92
作者
Dressler, Inka [1 ]
Freund, Niklas [1 ]
Lowke, Dirk [1 ]
机构
[1] TU Braunschweig, Inst Bldg Mat Concrete Construct & Fire Safety, D-38106 Braunschweig, Germany
关键词
additive manufacturing; shotcrete 3D printing; interlayer strength; bond; accelerator; HARDENED PROPERTIES; DIGITAL FABRICATION; STRUCTURAL BUILDUP; BOND STRENGTH; CONSTRUCTION; EXTRUSION; ADHESION; SCC; PERFORMANCE; TECHNOLOGY;
D O I
10.3390/ma13020374
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, the progress in 3D concrete printing has developed enormously. However, for the techniques available, there is still a severe lack of knowledge of the functional interaction of processing technology, concrete rheology and admixture usage. For shotcrete 3D printing technology, we present the effect of accelerator dosages (0%, 2%, 4% and 6%) on fresh concrete properties and on interlayer strength. Therefore, early yield stress development up to 90 min is measured with penetration resistance measurements. Deformation of layers under loading is investigated with digital image correlation and a mechanical testing machine. One point in time (10 min after deposition) is examined to quantify vertical buildability of elements depending on the accelerator dosage. Four different interlayer times (0, 2, 5 and 30 min), which occur for the production of small and large elements as well as due to delay during production, are investigated mechanically as well as quantitatively with computed tomography regarding the formation of cold joints. With increased accelerator dosage, an instantaneous increase in early age yield stress and yield stress evolution was observed. An increase in interlayer time leads to a reduced strength. This is mainly attributed to the observed reduced mechanical interlocking effect of the strands. Finally, a model to describe interlayer quality is presented. In the end, advantages as well as limitations of the findings are discussed.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Biomimicry for 3D concrete printing: A review and perspective
    du Plessis, Anton
    Babafemi, Adewumi John
    Paul, Suvash Chandra
    Panda, Biranchi
    Tran, Jonathan Phuong
    Broeckhoven, Chris
    ADDITIVE MANUFACTURING, 2021, 38
  • [22] Mesh reinforcing method for 3D Concrete Printing
    Marchment, Taylor
    Sanjayan, Jay
    AUTOMATION IN CONSTRUCTION, 2020, 109
  • [23] Lap Joint Reinforcement for 3D Concrete Printing
    Marchment, Taylor
    Sanjayan, Jay
    JOURNAL OF STRUCTURAL ENGINEERING, 2022, 148 (06)
  • [24] Framework of 3D Concrete Printing Potential and Challenges
    Al-Tamimi, Adil K. K.
    Alqamish, Habib H. H.
    Khaldoune, Ahlam
    Alhaidary, Haidar
    Shirvanimoghaddam, Kamyar
    BUILDINGS, 2023, 13 (03)
  • [25] CONSTRUCTION-SCALE 3D PRINTING: SHAPE STABILITY OF FRESH PRINTING CONCRETE
    Kazemian, Ali
    Yuan, Xiao
    Meier, Ryan
    Cochran, Evan
    Khoshnevis, Behrokh
    PROCEEDINGS OF THE ASME 12TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE - 2017, VOL 2, 2017,
  • [26] Synchronized concrete and bonding agent deposition system for interlayer bond strength enhancement in 3D concrete printing
    Weng, Yiwei
    Li, Mingyang
    Wong, Teck Neng
    Tan, Ming Jen
    AUTOMATION IN CONSTRUCTION, 2021, 123 (123)
  • [27] The Effect of Printing Direction on the Strength Characteristics of a 3D Printed Concrete Wall Section
    Poldaru, Mattias
    Tammkorv, Karl
    Tuisk, Tanel
    Kiviste, Mihkel
    Puust, Raido
    Zhang, Hongzhi
    Chen, Yu
    Copuroglu, Oguzhan
    Xu, Jie
    BUILDINGS, 2023, 13 (12)
  • [28] Bond properties of reinforcing bar penetrations in 3D concrete printing
    Marchment, Taylor
    Sanjayan, Jay
    AUTOMATION IN CONSTRUCTION, 2020, 120
  • [29] 3D Printed Concrete: Fresh and Hardened Properties
    Thajeel, Marwah M.
    Balazs, Gyorgy L.
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2024, : 12 - 27
  • [30] Off-site construction with 3D concrete printing
    Ter Haar, Bjorn
    Kruger, Jacques
    van Zijl, Gideon
    AUTOMATION IN CONSTRUCTION, 2023, 152