The Effect of Accelerator Dosage on Fresh Concrete Properties and on Interlayer Strength in Shotcrete 3D Printing

被引:98
作者
Dressler, Inka [1 ]
Freund, Niklas [1 ]
Lowke, Dirk [1 ]
机构
[1] TU Braunschweig, Inst Bldg Mat Concrete Construct & Fire Safety, D-38106 Braunschweig, Germany
关键词
additive manufacturing; shotcrete 3D printing; interlayer strength; bond; accelerator; HARDENED PROPERTIES; DIGITAL FABRICATION; STRUCTURAL BUILDUP; BOND STRENGTH; CONSTRUCTION; EXTRUSION; ADHESION; SCC; PERFORMANCE; TECHNOLOGY;
D O I
10.3390/ma13020374
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, the progress in 3D concrete printing has developed enormously. However, for the techniques available, there is still a severe lack of knowledge of the functional interaction of processing technology, concrete rheology and admixture usage. For shotcrete 3D printing technology, we present the effect of accelerator dosages (0%, 2%, 4% and 6%) on fresh concrete properties and on interlayer strength. Therefore, early yield stress development up to 90 min is measured with penetration resistance measurements. Deformation of layers under loading is investigated with digital image correlation and a mechanical testing machine. One point in time (10 min after deposition) is examined to quantify vertical buildability of elements depending on the accelerator dosage. Four different interlayer times (0, 2, 5 and 30 min), which occur for the production of small and large elements as well as due to delay during production, are investigated mechanically as well as quantitatively with computed tomography regarding the formation of cold joints. With increased accelerator dosage, an instantaneous increase in early age yield stress and yield stress evolution was observed. An increase in interlayer time leads to a reduced strength. This is mainly attributed to the observed reduced mechanical interlocking effect of the strands. Finally, a model to describe interlayer quality is presented. In the end, advantages as well as limitations of the findings are discussed.
引用
收藏
页数:19
相关论文
共 61 条
[1]  
[Anonymous], 2012, The Economist
[2]  
[Anonymous], 2019, 123502 DIN EN
[3]   Rethinking reinforcement for digital fabrication with concrete [J].
Asprone, Domenico ;
Menna, Costantino ;
Bos, Freek P. ;
Salet, Theo A. M. ;
Mata-Falcon, Jaime ;
Kaufmann, Walter .
CEMENT AND CONCRETE RESEARCH, 2018, 112 :111-121
[4]   3D printing of reinforced concrete elements: Technology and design approach [J].
Asprone, Domenico ;
Auricchio, Ferdinando ;
Menna, Costantino ;
Mercuri, Valentina .
CONSTRUCTION AND BUILDING MATERIALS, 2018, 165 :218-231
[5]   Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing [J].
Bos, Freek ;
Wolfs, Rob ;
Ahmed, Zeeshan ;
Salet, Theo .
VIRTUAL AND PHYSICAL PROTOTYPING, 2016, 11 (03) :209-225
[6]  
Bravo A., 2003, AM CONCR I, V217, P211, DOI DOI 10.14359/12915
[7]   3D printing using concrete extrusion: A roadmap for research [J].
Buswell, R. A. ;
de Silva, W. R. Leal ;
Jones, S. Z. ;
Dirrenberger, J. .
CEMENT AND CONCRETE RESEARCH, 2018, 112 :37-49
[8]   Improved mesoscale segmentation of concrete from 3D X-ray images using contrast enhancers [J].
Carrara, P. ;
Kruse, R. ;
Bentz, D. P. ;
Lunardelli, M. ;
Leusmann, T. ;
Varady, P. A. ;
De Lorenzis, L. .
CEMENT & CONCRETE COMPOSITES, 2018, 93 :30-42
[9]   Vision of 3D printing with concrete - Technical, economic and environmental potentials [J].
De Schutter, Geert ;
Lesage, Karel ;
Mechtcherine, Viktor ;
Nerella, Venkatesh Naidu ;
Habert, Guillaume ;
Agusti-Juan, Isolda .
CEMENT AND CONCRETE RESEARCH, 2018, 112 :25-36
[10]  
DIN EN ISO, 2010, Norm DIN EN ISO 4287