Unexpected features of branched flow through high-mobility two-dimensional electron gases

被引:119
作者
Jura, M. P. [1 ]
Topinka, M. A.
Urban, L.
Yazdani, A.
Shtrikman, H.
Pfeiffer, L. N.
West, K. W.
Goldhaber-Gordon, D.
机构
[1] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[6] Alcatel Lucent, Bell Labs, Murray Hill, NJ 07974 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nphys756
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
GaAs-based two-dimensional electron gases (2DEGs) show a wealth of remarkable electronic states(1-3), and serve as the basis for fast transistors, research on electrons in nanostructures(4,5) and prototypes of quantum- computing schemes(6). All of these uses depend on the extremely low levels of disorder in GaAs 2DEGs, with low- temperature mean free paths ranging from micrometres to hundreds of micrometres(7). Here we study how disorder affects the spatial structure of electron transport by imaging electron flow in three different GaAs/AlGaAs 2DEGs, whose mobilities range over an order of magnitude. As expected, electrons flow along narrow branches that we find remain straight over a distance roughly proportional to the mean free path. We also observe two unanticipated phenomena in high-mobility samples. In our highest-mobility sample we observe an almost complete absence of sharp impurity or defect scattering, indicated by the complete suppression of quantum coherent interference fringes. Also, branched flow through the chaotic potential of a high-mobility sample remains stable to significant changes to the initial conditions of injected electrons.
引用
收藏
页码:841 / 845
页数:5
相关论文
共 31 条
[1]   EVOLUTION OF SEMI-CLASSICAL QUANTUM STATES IN PHASE-SPACE [J].
BERRY, MV ;
BALAZS, NL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (05) :625-642
[2]   SMALL-ANGLE SCATTERING IN 2-DIMENSIONAL ELECTRON GASES [J].
COLERIDGE, PT .
PHYSICAL REVIEW B, 1991, 44 (08) :3793-3801
[3]   Imaging cyclotron orbits and scattering sites in a high-mobility two-dimensional electron gas [J].
Crook, R ;
Smith, CG ;
Simmons, MY ;
Ritchie, DA .
PHYSICAL REVIEW B, 2000, 62 (08) :5174-5178
[4]   Imaging diffraction-limited electronic collimation from a non-equilibrium one-dimensional ballistic constriction [J].
Crook, R ;
Smith, CG ;
Barnes, CHW ;
Simmons, MY ;
Ritchie, DA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (08) :L167-L172
[5]   Cryogenic scanning probe characterization of semiconductor nanostructures [J].
Eriksson, MA ;
Beck, RG ;
Topinka, M ;
Katine, JA ;
Westervelt, RM ;
Campman, KL ;
Gossard, AC .
APPLIED PHYSICS LETTERS, 1996, 69 (05) :671-673
[6]  
GIULANI NR, 2002, PHYS REV LETT, V88, DOI UNSP 054103
[7]   Thermal averages in a quantum point contact with a single coherent wave packet [J].
Heller, EJ ;
Aidala, KE ;
LeRoy, BJ ;
Bleszynski, AC ;
Kalben, A ;
Westervelt, RM ;
Maranowski, KD ;
Gossard, AC .
NANO LETTERS, 2005, 5 (07) :1285-1292
[8]   Branching and fringing in microstructure electron flow [J].
Heller, EJ ;
Shaw, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (22-24) :3977-3987
[9]   The microscopic nature of localization in the quantum Hall effect [J].
Ilani, S ;
Martin, J ;
Teitelbaum, E ;
Smet, JH ;
Mahalu, D ;
Umansky, V ;
Yacoby, A .
NATURE, 2004, 427 (6972) :328-332
[10]   Imaging electron density in a two-dimensional electron gas [J].
LeRoy, BJ ;
Topinka, MA ;
Westervelt, RM ;
Maranowski, KD ;
Gossard, AC .
APPLIED PHYSICS LETTERS, 2002, 80 (23) :4431-4433