Decomposition temperature sensitivity of isolated soil organic matter fractions

被引:68
作者
Plante, Alain F. [1 ]
Conant, Richard T. [2 ]
Carlson, Jenny [2 ]
Greenwood, Rebecca [2 ]
Shulman, Jeremy M. [2 ]
Haddix, Michelle L. [2 ]
Paul, Eldor A. [2 ]
机构
[1] Univ Penn, Dept Earth & Environm Sci, Philadelphia, PA 19104 USA
[2] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
Decomposition; Temperature sensitivity; Particulate organic matter; Non-hydrolysable carbon; ACID-HYDROLYSIS; CARBON; INCUBATION; FEEDBACKS; INCREASES; TURNOVER;
D O I
10.1016/j.soilbio.2010.07.022
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The general consensus is that a warming climate will result in the acceleration of soil organic matter (5084) decomposition, thus acting as a potential positive feedback mechanism. However, the debate over the relative temperature sensitivity of labile versus recalcitrant SOM has not been fully resolved. We isolated acid hydrolysis residues to represent a recalcitrant pool of SOM and particulate organic matter (POM) to represent a labile pool of SOM, and incubated each at different temperatures to determine temperature sensitivity of decomposition. Short-term incubations of POM generated results consistent with published experiments (i.e., greater proportion of C respired and lower Q(10) than whole soil), while incubations of acid hydrolysis residues did not. The contrasting results illustrate the difficulty in assessing temperature sensitivity of labile versus stable SOM decomposition, partly because of the inability to quantitatively isolate labile versus stable SOM pools and to be sufficiently certain that respiration responses to temperature are not masked by processes such as enhanced stabilization or microbial inhibition/adaptation. Further study on the temperature sensitivity of decomposition of isolated SOM fractions is necessary to better explain and predict temperature responses of bulk SOM decomposition. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1991 / 1996
页数:6
相关论文
共 30 条
  • [1] [Anonymous], 2001, CLIMATE CHANGE 2001
  • [2] Temperature-associated increases in the global soil respiration record
    Bond-Lamberty, Ben
    Thomson, Allison
    [J]. NATURE, 2010, 464 (7288) : 579 - U132
  • [3] Bowman RA, 2002, J SOIL WATER CONSERV, V57, P121
  • [4] PARTICULATE SOIL ORGANIC-MATTER CHANGES ACROSS A GRASSLAND CULTIVATION SEQUENCE
    CAMBARDELLA, CA
    ELLIOTT, ET
    [J]. SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1992, 56 (03) : 777 - 783
  • [5] Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance
    Conant, Richard T.
    Steinweg, J. Megan
    Haddix, Michelle L.
    Paul, Eldor A.
    Plante, Alain F.
    Six, Johan
    [J]. ECOLOGY, 2008, 89 (09) : 2384 - 2391
  • [6] Density fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem context
    Crow, Susan E.
    Swanston, Christopher W.
    Lajtha, Kate
    Brooks, J. Renee
    Keirstead, Heath
    [J]. BIOGEOCHEMISTRY, 2007, 85 (01) : 69 - 90
  • [7] Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
    Davidson, EA
    Janssens, IA
    [J]. NATURE, 2006, 440 (7081) : 165 - 173
  • [8] Falloon PD, 2000, BIOL FERT SOILS, V30, P388
  • [9] Temperature responses of individual soil organic matter components
    Feng, Xiaojuan
    Simpson, Myrna J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2008, 113 (G3)
  • [10] Feedbacks of terrestrial ecosystems to climate change
    Field, Christopher B.
    Lobell, David B.
    Peters, Halton A.
    Chiariello, Nona R.
    [J]. ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, 2007, 32 (1-29) : 1 - 29