Discrete-time simulation of Stochastic Volterra equations

被引:19
作者
Richard, Alexandre [1 ,2 ]
Tan, Xiaolu [3 ]
Yang, Fan [3 ]
机构
[1] Univ Paris Saclay, Cent Supelec, MICS, Gif Sur Yvette, France
[2] CNRS FR 3487, Gif Sur Yvette, France
[3] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
关键词
Stochastic Volterra equations; Euler scheme; Milstein scheme; Monte-Carlo method; MLMC; ERGODIC PROPERTIES; MULTILEVEL; SCHEMES; ERROR;
D O I
10.1016/j.spa.2021.07.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study discrete-time simulation schemes for stochastic Volterra equations, namely the Euler and Milstein schemes, and the corresponding Multilevel Monte-Carlo method. By using and adapting some results from Zhang (2008), together with the Garsia-Rodemich-Rumsey lemma, we obtain the convergence rates of the Euler scheme and Milstein scheme under the supremum norm. We then apply these schemes to approximate the expectation of functionals of such Volterra equations by the (Multilevel) Monte-Carlo method, and compute their complexity. We finally provide some numerical simulation results. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 138
页数:30
相关论文
共 31 条
  • [1] [Anonymous], 1970, PRINCETON MATH SERIE
  • [2] [Anonymous], 2012, Fractional Dynamics: Recent Advances
  • [3] [Anonymous], 1990, ENCY MATH APPL
  • [4] [Anonymous], 2006, PROBABILITY ITS APPL
  • [5] FROM ROUGH PATH ESTIMATES TO MULTILEVEL MONTE CARLO
    Bayer, Christian
    Friz, Peter K.
    Riedel, Sebastian
    Schoenmakers, John
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) : 1449 - 1483
  • [6] CENTRAL LIMIT THEOREM FOR THE MULTILEVEL MONTE CARLO EULER METHOD
    Ben Alaya, Mohamed
    Kebaier, Armed
    [J]. ANNALS OF APPLIED PROBABILITY, 2015, 25 (01) : 211 - 234
  • [7] Hybrid scheme for Brownian semistationary processes
    Bennedsen, Mikkel
    Lunde, Asger
    Pakkanen, Mikko S.
    [J]. FINANCE AND STOCHASTICS, 2017, 21 (04) : 931 - 965
  • [8] Berger M.A., 1980, I. J. Integral Equ., V2, P187
  • [9] Regularized fractional Ornstein-Uhlenbeck processes and their relevance to the modeling of fluid turbulence
    Chevillard, Laurent
    [J]. PHYSICAL REVIEW E, 2017, 96 (03)
  • [10] Coutin L., 2001, STOCHASTIC ANAL MATH, P39