Link Discovery: A Comprehensive Analysis

被引:5
作者
Erbs, Nicolai [1 ]
Zesch, Torsten [1 ]
Gurevych, Iryna [1 ]
机构
[1] Tech Univ Darmstadt, Ubiquitous Knowledge Proc Lab, Darmstadt, Germany
来源
FIFTH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2011) | 2011年
关键词
D O I
10.1109/ICSC.2011.63
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a comprehensive analysis of link discovery approaches. We classify them with regard to the type of knowledge being used, and identify three commonly used sources of knowledge: The text of a document, the document title, and already existing links. We analyze the influence of the knowledge source as well as of the amount of training data used. Results show that the link-based approach performs best if the amount of training data is huge. In a more realistic setting with fewer training data, the text-based approach yields better results.
引用
收藏
页码:83 / 86
页数:4
相关论文
共 10 条
  • [1] [Anonymous], 2007, Proceedings of the 16th ACM Conference on Con- ference on Information and Knowledge Management, DOI DOI 10.1145/1321440.1321475.19
  • [2] Buffa M., 2006, P INTRAWEBS WORKSH 2
  • [3] Geva S., 2007, PREPR INEX WORKSH, P404
  • [4] Hoffart Johannes, 2009, PREPR INEX WORKSH, P314
  • [5] Huang W.C., 2009, LECT NOTES COMPUTER, P312
  • [6] Itakura K.Y., 2007, INEX 2007 WORKSH PRE, P417
  • [7] Majchrzak A., 2006, P 2006 INT S WIKIS, P99
  • [8] Manning C., 1999, Foundations of Statistical Natural Language Processing
  • [9] Mihalcea R., 2004, P EMNLP 2004 ASS COM, P404
  • [10] Salton G., 1983, INTRO MODERN INFORM