Effects of Postprocess Thermal Treatments on Static and Cyclic Deformation Behavior of Additively Manufactured Austenitic Stainless Steel

被引:7
|
作者
Pegues, Jonathan W. [1 ,2 ]
Roach, Michael D. [3 ]
Shamsaei, Nima [1 ,2 ]
机构
[1] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA
[2] Auburn Univ, NCAME, Auburn, AL 36849 USA
[3] Univ Mississippi, Med Ctr, Dept Biomed Mat Sci, Jackson, MS 39216 USA
基金
美国国家科学基金会;
关键词
FATIGUE PERFORMANCE; CRACK INITIATION; MICROSTRUCTURE; MECHANISMS; TI-6AL-4V; DEFECTS; GROWTH; NICKEL;
D O I
10.1007/s11837-019-03983-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As additive manufacturing advances towards use in structural applications which can also include fatigue-critical parts, the process-structure-property relationships must be fully characterized. Currently, most additive manufactured components go through extensive postprocessing including heat treatment to improve their microstructure and resulting fatigue performance. In this study, the effect of stress relief and solution annealing on the tensile and fatigue performance in force- and strain-controlled conditions was investigated. The results reveal that, while the strain-life fatigue behavior was not significantly affected by heat treatment, stress-relieved specimens showed remarkable enhanced stress-life fatigue resistance. Microstructural analysis suggested that the as-fabricated microstructure was beneficial to enhance the crack initiation resistance by shielding process-induced defects from excessive deformation. However, after solution annealing, the crack initiation mechanism shifted from nucleating at twin and high-angle grain boundaries to defects such as lack of fusion and gas-entrapped pores, negatively affecting the fatigue resistance.
引用
收藏
页码:1355 / 1365
页数:11
相关论文
共 50 条
  • [1] Cyclic deformation and fatigue behavior of additively manufactured 17-4 PH stainless steel
    Carneiro, Luiz
    Jalalahmadi, Behrooz
    Ashtekar, Ankur
    Jiang, Yanyao
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 123 : 22 - 30
  • [2] Deformation and Fracture Behavior of Additively Manufactured 316L Stainless Steel
    Byun, Thak Sang
    Gussev, Maxim N.
    Lach, Timothy G.
    JOM, 2024, 76 (01) : 362 - 378
  • [3] Deformation behavior of additively manufactured GP1 stainless steel
    Clausen, B.
    Brown, D. W.
    Carpenter, J. S.
    Clarke, K. D.
    Clarke, A. J.
    Vogel, S. C.
    Bernardin, J. D.
    Spernjak, D.
    Thompson, J. M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 696 : 331 - 340
  • [4] ORIENTATION EFFECTS ON FATIGUE BEHAVIOR OF ADDITIVELY MANUFACTURED STAINLESS STEEL
    Smith, Thale R.
    Sugar, Joshua D.
    San Marchi, Chris
    Schoenung, Julie M.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2017, VOL 6A, 2017,
  • [5] High strain rate compressive deformation behavior of an additively manufactured stainless steel
    McWilliams, Brandon
    Pramanik, Brahmananda
    Kudzal, Andelle
    Taggart-Scarff, Josh
    ADDITIVE MANUFACTURING, 2018, 24 : 432 - 439
  • [6] Thermal deformation behavior and microstructure of nuclear austenitic stainless steel
    Liu Jie
    Fan GuangWei
    Han PeiDe
    Liu JianSheng
    Ge DongSheng
    Qiao GuanJun
    SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2009, 52 (08): : 2167 - 2171
  • [7] Thermal deformation behavior and microstructure of nuclear austenitic stainless steel
    LIU Jie1
    2 College of Materials Science and Engineering
    3 Taiyuan Iron and Steel (Group) Company Ltd.
    4 College of Materials Science and Engineering
    Science in China(Series E:Technological Sciences), 2009, (08) : 2167 - 2171
  • [8] Thermal deformation behavior and microstructure of nuclear austenitic stainless steel
    Jie Liu
    GuangWei Fan
    PeiDe Han
    JianSheng Liu
    DongSheng Ge
    GuanJun Qiao
    Science in China Series E: Technological Sciences, 2009, 52 : 2167 - 2171
  • [9] Thermochemical post-processing of additively manufactured austenitic stainless steel
    Funch, Cecilie, V
    Somlo, Kinga
    Christiansen, Thomas L.
    Somers, Marcel A. J.
    SURFACE & COATINGS TECHNOLOGY, 2022, 441
  • [10] Non-oxide precipitates in additively manufactured austenitic stainless steel
    Upadhyay, Manas Vijay
    Slama, Meriem Ben Haj
    Gaudez, Steve
    Mohanan, Nikhil
    Yedra, Lluis
    Hallais, Simon
    Heripre, Eva
    Tanguy, Alexandre
    SCIENTIFIC REPORTS, 2021, 11 (01)