Hankel operators on weighted Fock spaces

被引:24
作者
Bommier-Hato, Helene [1 ]
Youssfi, El Hassan [1 ]
机构
[1] Univ Aix Marseille 1, CMI, CNRS, UMR 6632,LATP, F-13453 Marseille 13, France
关键词
Hankel operator; Fock space; Bergman kernel;
D O I
10.1007/s00020-007-1513-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Hankel operators H-(f) over bar with antiholomorphic symbol (f) over bar on the generalized Fock space A(2)(mu(m)), where mu(m) is the measure with weight e-vertical bar z vertical bar(m), m > 0 with respect to the Lebesgue measure in C-n. We prove that H-(f) over bar is bounded if and only if f is a polynomial of degree at most m/2. We show that H-(f) over bar is compact if and only if f is a polynomial of degree strictly smaller that m/2. We also establish that H-(f) over bar is in the Schatten class S-p if and only if p > 2n and f is a polynomial of degree strictly smaller than m(p-2n)/2p.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 17 条
[1]   Mean oscillation and Hankel operators on the Segal-Bargmann space [J].
Bauer, V .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 52 (01) :1-15
[2]   Hilbert-Schmidt Hankel operators on the Segal-Bargmann space [J].
Bauer, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (10) :2989-2996
[3]   TOEPLITZ-OPERATORS ON THE SEGAL-BARGMANN SPACE [J].
BERGER, CA ;
COBURN, LA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 301 (02) :813-829
[4]  
Haslinger F., 2002, Annales de la Faculte des Sciences de Toulouse, Mathematiques, V11, P57, DOI 10.5802/afst.1018
[5]  
HASLINGER F, 2006, COMPACTNESS SOLUTION
[6]  
Haslinger R, 2006, J MATH KYOTO U, V46, P249
[7]  
JING X, 2004, STANDARD DEVIATION S, V53, P1381
[8]   Continuity and Schatten-von!Neumann p-class membership of Hankel operators with anti-holomorphic symbols on (generalized) Fock spaces [J].
Knirsch, W ;
Schneider, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (01) :403-414
[9]  
Levin, 1996, LECT ENTIRE FUNCTION
[10]   Spectral properties of the partial derivative-canonical solution operator [J].
Lovera, S ;
Youssfi, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 208 (02) :360-376