Out-of-plane thermoelectric performance for p-doped GeSe

被引:6
作者
Chaves, Anderson S. [1 ,2 ]
Larson, Daniel T. [3 ]
Kaxiras, Efthimios [2 ,3 ]
Antonelli, Alex [1 ,4 ]
机构
[1] Univ Estadual Campinas, Gleb Wataghin Inst Phys, POB 13083-859, Campinas, SP, Brazil
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Univ Estadual Campinas, Ctr Comp Engn & Sci, POB 13083-859, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
THERMAL-CONDUCTIVITY; NANOSTRUCTURED THERMOELECTRICS; CRYSTAL-STRUCTURE; POWER-FACTOR; SNSE; FIGURE; PHASE; MERIT; SCATTERING; ULTRALOW;
D O I
10.1103/PhysRevB.105.205201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The record-breaking thermoelectric performance of tin selenide (SnSe) has motivated the investigation of analog compounds with the same structure. A promising candidate that emerged recently is germanium selenide (GeSe). Here, using extensive first-principles calculations of the hole-phonon and hole-impurity scattering, we investigate the thermoelectric transport properties of the orthorhombic phase of p-doped GeSe. We predict outstanding thermoelectric performance for GeSe over a broad range of temperatures due to its high Seebeck coefficients, extremely low Lorenz numbers, ultralow total thermal conductivity, and relatively large band gap. In particular, the out-of-plane direction in GeSe presents equivalent or even higher performance than SnSe for temperatures above 500 K. By extending the analysis to 900 K, we obtained an ultrahigh value for the thermoelectric figure of merit (zT = 3.2) at the optimal hole density of 4 x 10(19) cm(3). Our work provides strong motivation for continued experimental work focusing on improving the GeSe doping efficiency in order to achieve this optimal hole density.
引用
收藏
页数:10
相关论文
共 104 条
  • [1] [Anonymous], PHYS REV B, DOI [10.1103/PhysRevB.105.205201, DOI 10.1103/PHYSREVB.105.205201]
  • [2] Tin and germanium monochalcogenide IV-VI semiconductor nanocrystals for use in solar cells
    Antunez, Priscilla D.
    Buckley, Jannise J.
    Brutchey, Richard L.
    [J]. NANOSCALE, 2011, 3 (06) : 2399 - 2411
  • [3] Askerov B. M., 2009, THERMODYNAMICS GIBBS, V57
  • [4] Phonons and related crystal properties from density-functional perturbation theory
    Baroni, S
    de Gironcoli, S
    Dal Corso, A
    Giannozzi, P
    [J]. REVIEWS OF MODERN PHYSICS, 2001, 73 (02) : 515 - 562
  • [5] High-performance bulk thermoelectrics with all-scale hierarchical architectures
    Biswas, Kanishka
    He, Jiaqing
    Blum, Ivan D.
    Wu, Chun-I
    Hogan, Timothy P.
    Seidman, David N.
    Dravid, Vinayak P.
    Kanatzidis, Mercouri G.
    [J]. NATURE, 2012, 489 (7416) : 414 - 418
  • [6] Bletskan D. I., 2005, J. Ovonic Res., V1, P53
  • [7] Linac Coherent Light Source: The first five years
    Bostedt, Christoph
    Boutet, Sebastien
    Fritz, David M.
    Huang, Zhirong
    Lee, Hae Ja
    Lemke, Henrik T.
    Robert, Aymeric
    Schlotter, William F.
    Turner, Joshua J.
    Williams, Garth J.
    [J]. REVIEWS OF MODERN PHYSICS, 2016, 88 (01)
  • [8] Silicon nanowires as efficient thermoelectric materials
    Boukai, Akram I.
    Bunimovich, Yuri
    Tahir-Kheli, Jamil
    Yu, Jen-Kan
    Goddard, William A., III
    Heath, James R.
    [J]. NATURE, 2008, 451 (7175) : 168 - 171
  • [9] Brooks H., 1955, ADV ELECT ELECT PHYS, P85
  • [10] IR AND RAMAN-SPECTRA OF 4-6 COMPOUNDS SNS AND SNSE
    CHANDRASEKHAR, HR
    HUMPHREYS, RG
    ZWICK, U
    CARDONA, M
    [J]. PHYSICAL REVIEW B, 1977, 15 (04): : 2177 - 2183