Tumor Immune Microenvironment during Epithelial-Mesenchymal Transition

被引:197
作者
Taki, Mana [1 ]
Abiko, Kaoru [1 ,2 ]
Ukita, Masayo [1 ]
Murakami, Ryusuke [1 ]
Yamanoi, Koji [1 ]
Yamaguchi, Ken [1 ]
Hamanishi, Junzo [1 ]
Baba, Tsukasa [3 ]
Matsumura, Noriomi [4 ]
Mandai, Masaki [1 ]
机构
[1] Kyoto Univ Grad Sch Med, Dept Gynecol & Obstet, Sakyo Ku, Kyoto, Japan
[2] Natl Hosp Org Kyoto Med Ctr, Dept Obstet & Gynecol, Fushimi Ku, Kyoto, Japan
[3] Iwate Med Univ, Sch Med, Dept Obstet & Gynecol, Morioka, Iwate, Japan
[4] Kindai Univ, Fac Med, Dept Obstet & Gynecol, Osakasayama, Osaka, Japan
关键词
PHASE-I TRIAL; T-CELLS; SUPPRESSOR-CELLS; CANCER-CELLS; HEPATOCELLULAR-CARCINOMA; TGF-BETA; GENE-EXPRESSION; TARGETING EMT; MYELOID CELLS; METASTASIS;
D O I
10.1158/1078-0432.CCR-20-4459
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Epithelial-mesenchymal transition (EMT) has been shown to play a critical role in tumor development from initiation to metastasis. EMT could be regarded as a continuum, with intermediate hybrid epithelial and mesenchymal phenotypes having high plasticity. Classical EMT is characterized by the phenotype change of epithelial cells to cells with mesenchymal properties, but EMT is also associated with multiple other molecular processes, including tumor immune evasion. Some previous studies have shown that EMT is associated with the cell number of immunosuppressive cells, such as myeloid-derived suppressor cells, and the expression of immune checkpoints, such as programmed cell death-ligand 1, in several cancer types. At the molecular level, EMT transcriptional factors, including Snail, Zeb1, and Twist1, produce or attract immunosuppressive cells or promote the expression of immuno-suppressive checkpoint molecules via chemokine production, leading to a tumor immunosuppressive microenvironment. In turn, immunosuppressive factors induce EMT in tumor cells. This feedback loop between EMT and immunosuppression promotes tumor progression. For therapy directly targeting EMT has been challenging, the elucidation of the interactive regulation of EMT and immunosuppression is desirable for developing new therapeutic approaches in cancer. The combination of immune checkpoint inhibitors and immunotherapy targeting immunosuppressive cells could be a promising therapy for EMT.
引用
收藏
页码:4669 / 4679
页数:11
相关论文
共 142 条
[61]   EMT- and MET-related processes in nonepithelial tumors: importance for disease progression, prognosis, and therapeutic opportunities [J].
Kahlert, Ulf D. ;
Joseph, Justin V. ;
Kruyt, Frank A. E. .
MOLECULAR ONCOLOGY, 2017, 11 (07) :860-877
[62]   ZEB1-regulated inflammatory phenotype in breast cancer cells [J].
Katsura, Akihiro ;
Tamura, Yusuke ;
Hokari, Satoshi ;
Harada, Mayumi ;
Morikawa, Masato ;
Sakurai, Tsubasa ;
Takahashi, Kei ;
Mizutani, Anna ;
Nishida, Jun ;
Yokoyama, Yuichiro ;
Morishita, Yasuyuki ;
Murakami, Takashi ;
Ehata, Shogo ;
Miyazono, Kohei ;
Koinuma, Daizo .
MOLECULAR ONCOLOGY, 2017, 11 (09) :1241-1262
[63]   Expression and Activity of Phosphodiesterase Isoforms during Epithelial Mesenchymal Transition: The Role of Phosphodiesterase 4 [J].
Kolosionek, Ewa ;
Savai, Rajkumar ;
Ghofrani, Hossein Ardeschir ;
Weissmann, Norbert ;
Guenther, Andreas ;
Grimminger, Friedrich ;
Seeger, Werner ;
Banat, Gamal Andre ;
Schermuly, Ralph Theo ;
Pullamsetti, Soni Savai .
MOLECULAR BIOLOGY OF THE CELL, 2009, 20 (22) :4751-4765
[64]   The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer [J].
Krebs, Angela M. ;
Mitschke, Julia ;
Losada, Maria Lasierra ;
Schmalhofer, Otto ;
Boerries, Melanie ;
Busch, Hauke ;
Boettcher, Martin ;
Mougiakakos, Dimitrios ;
Reichardt, Wilfried ;
Bronsert, Peter ;
Brunton, Valerie G. ;
Pilarsky, Christian ;
Winkler, Thomas H. ;
Brabletz, Simone ;
Stemmler, Marc P. ;
Brabletz, Thomas .
NATURE CELL BIOLOGY, 2017, 19 (05) :518-+
[65]   Cancer Metastasis Is Accelerated through Immunosuppression during Snail-induced EMT of Cancer Cells [J].
Kudo-Saito, Chie ;
Shirako, Hiromi ;
Takeuchi, Tadashi ;
Kawakami, Yutaka .
CANCER CELL, 2009, 15 (03) :195-206
[66]   The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment [J].
Kumar, Vinit ;
Patel, Sima ;
Tcyganov, Evgenii ;
Gabrilovich, Dmitry I. .
TRENDS IN IMMUNOLOGY, 2016, 37 (03) :208-220
[67]   Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β [J].
Lan, Yan ;
Zhang, Dong ;
Xu, Chunxiao ;
Hance, Kenneth W. ;
Marelli, Bo ;
Qi, Jin ;
Yu, Huakui ;
Qin, Guozhong ;
Sircar, Aroop ;
Hernandez, Vivian M. ;
Jenkins, Molly H. ;
Fontana, Rachel E. ;
Deshpande, Amit ;
Locke, George ;
Sabzevari, Helen ;
Radvanyi, Laszlo ;
Lo, Kin-Ming .
SCIENCE TRANSLATIONAL MEDICINE, 2018, 10 (424)
[68]   Atorvastatin promotes the expansion of myeloid-derived suppressor cells and attenuates murine colitis [J].
Lei, Aihua ;
Yang, Qiong ;
Li, Xing ;
Chen, Haiwen ;
Shi, Maohua ;
Xiao, Qiang ;
Cao, Yingjiao ;
He, Yumei ;
Zhou, Jie .
IMMUNOLOGY, 2016, 149 (04) :432-446
[69]   Transcriptome profiling of a TGF-β-induced epithelial-to-mesenchymal transition reveals extracellular clusterin as a target for therapeutic antibodies [J].
Lenferink, A. E. G. ;
Cantin, C. ;
Nantel, A. ;
Wang, E. ;
Durocher, Y. ;
Banville, M. ;
Paul-Roc, B. ;
Marcil, A. ;
Wilson, M. R. ;
O'Connor-McCourt, M. D. .
ONCOGENE, 2010, 29 (06) :831-844
[70]   Immune checkpoint inhibitors: a narrative review of considerations for the anaesthesiologist [J].
Lewis, Alexandra L. ;
Chaft, Jamie ;
Girotra, Monica ;
Fischer, Gregory W. .
BRITISH JOURNAL OF ANAESTHESIA, 2020, 124 (03) :251-260