Subcritical nonlinear heat equation

被引:3
作者
Hayashi, Nakao [1 ]
Kaikina, Elena I.
Naumkin, Pavel I.
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Inst Matemat, Morelia 58089, Michoacan, Mexico
关键词
D O I
10.1016/j.jde.2007.04.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study asymptotic behavior in time of small solutions to nonlinear heat equations in subcritical case. We find a new family of self-similar solutions which change a sign. We show that solutions are stable in the neighborhood of these self-similar solutions. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:366 / 380
页数:15
相关论文
共 8 条
[1]   LARGE TIME BEHAVIOR OF SOLUTIONS OF A DISSIPATIVE SEMILINEAR HEAT-EQUATION [J].
ESCOBEDO, M ;
KAVIAN, O ;
MATANO, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (7-8) :1427-1452
[2]  
Escobedo M., 1997, HOUSTON J MATH, V13, P39
[3]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[4]   LARGE TIME BEHAVIOR OF THE SOLUTIONS OF A SEMILINEAR PARABOLIC EQUATION IN RN [J].
GMIRA, A ;
VERON, L .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 53 (02) :258-276
[5]   NONEXISTENCE OF GLOBAL SOLUTIONS OF SOME SEMILINEAR PARABOLIC DIFFERENTIAL EQUATIONS [J].
HAYAKAWA, K .
PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (07) :503-505
[6]   Large time behaviour of solutions to the dissipative nonlinear Schrodinger equation [J].
Hayashi, N ;
Kaikina, EI ;
Naumkin, PI .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 :1029-1043
[7]   Landau-Ginzburg type equations in the subcritical case [J].
Hayashi, N ;
Kaikina, EI ;
Naumkin, PI .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (01) :127-145
[8]   GROWING UP PROBLEM FOR SEMILINEAR HEAT EQUATIONS [J].
KOBAYASHI, K ;
SIRAO, T ;
TANAKA, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1977, 29 (03) :407-424