Individual parcellation of resting fMRI with a group functional connectivity prior

被引:72
|
作者
Chong, M. [1 ]
Bhushan, C. [1 ]
Joshi, A. A. [1 ]
Choi, S. [1 ]
Haldar, J. P. [1 ]
Shattuck, D. W. [2 ]
Spreng, R. N. [3 ]
Leahy, R. M. [1 ]
机构
[1] Univ Southern Calif, Signal & Image Proc Inst, Los Angeles, CA 90007 USA
[2] Univ Calif Los Angeles, Dept Neurol, Ahmanson Lovelace Brain Mapping Ctr, Los Angeles, CA 90024 USA
[3] Cornell Univ, Human Neurosci Inst, Dept Human Dev, Lab Brain & Cognit, Ithaca, NY USA
关键词
HUMAN CONNECTOME; BRAIN; ORGANIZATION; CORTEX;
D O I
10.1016/j.neuroimage.2017.04.054
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cortical parcellation based on resting fMRI is an important tool for investigating the functional organization and connectivity of the cerebral cortex. Group parcellation based on co-registration of anatomical images to a common atlas will inevitably result in errors in the locations of the boundaries of functional parcels when they are mapped back from the atlas to the individual. This is because areas of functional specialization vary across individuals in a manner that cannot be fully determined from the sulcal and gyral anatomy that is used for mapping between atlas and individual. We describe a method that avoids this problem by refining an initial group parcellation so that for each subject the parcel boundaries are optimized with respect to that subject's resting fMRI. Initialization with a common parcellation results in automatic correspondence between parcels across subjects. Further, by using a group sparsity constraint to model connectivity, we exploit group similarities in connectivity between parcels while optimizing their boundaries for each individual. We applied this approach with initialization on both high and low density group cortical parcellations and used resting fMRI data to refine across a group of individuals. Cross validation studies show improved homogeneity of resting activity within the refined parcels. Comparisons with task-based localizers show consistent reduction of variance of statistical parametric maps within the refined parcels relative to the group-based initialization indicating improved delineation of regions of functional specialization. This method enables a more accurate estimation of individual subject functional areas, facilitating group analysis of functional connectivity, while maintaining consistency across individuals with a standardized topological atlas.
引用
收藏
页码:87 / 100
页数:14
相关论文
共 50 条
  • [31] Effect of smoking on resting-state functional connectivity in smokers: An fMRI study
    Zhou, Shuang
    Xiao, Dan
    Peng, Peng
    Wang, Shuang-Kun
    Liu, Zhao
    Qin, Hai-Yan
    Li, Sheng-Shu
    Wang, Chen
    RESPIROLOGY, 2017, 22 (06) : 1118 - 1124
  • [32] Resting-state functional connectivity in anxiety disorders: a multicenter fMRI study
    Langhammer, Till
    Hilbert, Kevin
    Adolph, Dirk
    Arolt, Volker
    Bischoff, Sophie
    Boehnlein, Joscha
    Cwik, Jan C.
    Dannlowski, Udo
    Deckert, Juergen
    Domschke, Katharina
    Evens, Ricarda
    Fydrich, Thomas
    Gathmann, Bettina
    Hamm, Alfons O.
    Heinig, Ingmar
    Herrmann, Martin J.
    Hollandt, Maike
    Junghoefer, Markus
    Kircher, Tilo
    Koelkebeck, Katja
    Leehr, Elisabeth J.
    Lotze, Martin
    Margraf, Juergen
    Mumm, Jennifer L. M.
    Pittig, Andre
    Plag, Jens
    Richter, Jan
    Roesmann, Kati
    Ridderbusch, Isabelle C.
    Schneider, Silvia
    Schwarzmeier, Hanna
    Seeger, Fabian
    Siminski, Niklas
    Straube, Thomas
    Stroehle, Andreas
    Szeska, Christoph
    Wittchen, Hans-Ulrich
    Wroblewski, Adrian
    Yang, Yunbo
    Straube, Benjamin
    Lueken, Ulrike
    MOLECULAR PSYCHIATRY, 2025, 30 (04) : 1548 - 1557
  • [33] Altered Functional Connectivity in Essential Tremor A Resting-State fMRI Study
    Benito-Leon, Julian
    Louis, Elan D.
    Pablo Romero, Juan
    Antonio Hernandez-Tamames, Juan
    Manzanedo, Eva
    Alvarez-Linera, Juan
    Bermejo-Pareja, Felix
    Posada, Ignacio
    Rocon, Eduardo
    MEDICINE, 2015, 94 (49)
  • [34] Cohesive parcellation of the human brain using resting-state fMRI
    Nemani, Ajay
    Lowe, Mark J.
    JOURNAL OF NEUROSCIENCE METHODS, 2022, 377
  • [35] Dynamic thalamus parcellation from resting-state fMRI data
    Ji, Bing
    Li, Zhihao
    Li, Kaiming
    Li, Longchuan
    Langley, Jason
    Shen, Hui
    Nie, Shengdong
    Zhang, Renjie
    Hu, Xiaoping
    HUMAN BRAIN MAPPING, 2016, 37 (03) : 954 - 967
  • [36] Experimentally induced subclinical hypothyroidism causes decreased functional connectivity of the cuneus: A resting state fMRI study
    Goebel, Anna
    Goettlich, Martin
    Heldmann, Marcus
    Georges, Rene
    Nieberding, Relana
    Rogge, Berenike
    Sartorius, Alexander
    Brabant, Georg
    Muente, Thomas F.
    PSYCHONEUROENDOCRINOLOGY, 2019, 102 : 158 - 163
  • [37] Abnormal Neural Activity and Functional Connectivity in Amnestic Mild Cognitive Impairmet: a Resting State fMRI Study
    Liu, Ruiyue
    Hu, Bin
    Yao, Zhijun
    Ratcliffe, Martyn
    Wang, Wei
    Liang, Chuanjiang
    Cai, Qingcui
    Yang, Jing
    Zhao, Qinglin
    2013 6TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2013, : 765 - 769
  • [38] A Supervoxel-Based Method for Groupwise Whole Brain Parcellation with Resting State fMRI Data
    Wang, Jing
    Wang, Haixian
    FRONTIERS IN HUMAN NEUROSCIENCE, 2016, 10
  • [39] Individual Patterns of Abnormality in Resting-State Functional Connectivity Reveal Two Data-Driven PTSD Subgroups
    Maron-Katz, Adi
    Zhang, Yu
    Narayan, Manjari
    Wu, Wei
    Toll, Russell T.
    Naparstek, Sharon
    De Los Angeles, Carlo
    Longwell, Parker
    Shpigel, Emmanuel
    Newman, Jennifer
    Abu-Amara, Duna
    Marmar, Charles
    Etkin, Amit
    AMERICAN JOURNAL OF PSYCHIATRY, 2020, 177 (03) : 244 - 253
  • [40] Enhancing the network specific individual characteristics in rs-fMRI functional connectivity by dictionary learning
    Jain, Pratik
    Chakraborty, Ankit
    Hafiz, Rakibul
    Sao, Anil K.
    Biswal, Bharat
    HUMAN BRAIN MAPPING, 2023, 44 (08) : 3410 - 3432