An assessment model for cloud service security risk based on entropy and support vector machine

被引:6
|
作者
Jiang, Rong [1 ,2 ,3 ]
Ma, Zifei [4 ,5 ]
Yang, Juan [6 ]
机构
[1] Yunnan Univ Finance & Econ, Inst Intelligence Applicat, Kunming, Yunnan, Peoples R China
[2] Key Lab Serv Comp & Safety Management Yunnan Prov, Kunming, Yunnan, Peoples R China
[3] Kunming Key Lab Informat Econ & Informat Manageme, Kunming, Yunnan, Peoples R China
[4] Yunnan Agr Univ, Sch Water Conservancy, Kunming, Yunnan, Peoples R China
[5] Yunnan Univ, Sch Software, Kunming, Yunnan, Peoples R China
[6] KunmingOpen Coll, Kunming, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
cloud service; entropy weight; multi-classification; support vector machine; technology risk assessment; SYSTEMS; EDGE;
D O I
10.1002/cpe.6423
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Cloud services are open, shared, and complex. These characteristics will lead to many security risks and will affect the development of cloud services. Therefore, it is necessary to identify and measure the security risks of cloud services. However, there are still many deficiencies in this area. In light of this, this paper carries out an in-depth study from the perspective of technical security risk. Firstly, this paper combines the three aspects on cloud service security problems, objectives, and technologies. It attempts to explore the technological solutions to get security risk problems to achieve the expected security goals, and establish the cloud service technology security risk index system. Secondly, because of the strong subjectivity and the deficiency of the data obtained from cloud service providers, this paper establishes a cloud service security risk assessment model based on entropy weight theory and multi-classification support vector machine. Finally, the experimental results show that the evaluation model is feasible and effective.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] A Face Recognition System Based on Local Binary Patterns and Support Vector Machine for Home Security Service Robot
    Wang, Jiakailin
    Zheng, Jinjin
    Zhang, Shiwu
    He, Jijun
    Liang, Xiao
    Feng, Sui
    PROCEEDINGS OF 2016 9TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2016, : 303 - 307
  • [22] Support vector machine based ehealth cloud system for diabetes classification
    Azad C.
    Mehta A.K.
    Mahto D.
    Yadav D.K.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2020, 6 (22) : 1 - 10
  • [24] A comprehensive support vector machine-based classification model for soil quality assessment
    Liu, Yong
    Wang, Huifeng
    Zhang, Hong
    Liber, Karsten
    SOIL & TILLAGE RESEARCH, 2016, 155 : 19 - 26
  • [25] Evaluation on the Regional Ecological Security Based on Support Vector Machine and GIS
    Tian, Jingyi
    Huang, Lihua
    COMMUNICATIONS AND INFORMATION PROCESSING, PT 2, 2012, 289 : 639 - +
  • [26] Bridge seismic fragility model based on support vector machine and relevance vector machine
    Mo, Ruchun
    Chen, Libo
    Xing, Zhiquan
    Ye, Xiaobing
    Xiong, Chuanxiang
    Liu, Changsheng
    Chen, Yu
    STRUCTURES, 2023, 52 : 768 - 778
  • [27] Risk Preference Based Support Vector Machine Inference Model for Slope Collapse Prediction
    Cheng, Min-Yuan
    Wu, Yu-Wei
    Chen, Kuan-Lin
    AUTOMATION IN CONSTRUCTION, 2012, 22 : 175 - 181
  • [28] Terrorism Risk Prediction Model Based on Support Vector Machine Optimized by Whale Algorithm
    Luan, Meng
    Sun, Duoyong
    Li, Zhanfeng
    PROCEEDINGS OF 2019 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2019), 2019, : 166 - 169
  • [29] Cropland evaluation model based on support vector machine
    Hua, Xiong
    Zou, Lin
    Hao, Xiangping
    Chen, Wei
    2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES: ITESS 2008, VOL 4, 2008, : 44 - 48
  • [30] Predictive control based on support vector machine model
    Wang, Jing
    Sun, Shuyi
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 1683 - +