B-Splines and NURBS Based Finite Element Methods for Strained Electronic Structure Calculations

被引:7
作者
Masud, Arif [1 ]
Al-Naseem, Ahmad A. [2 ]
Kannan, Raguraman [3 ]
Gajendran, Harishanker [4 ]
机构
[1] Univ Illinois, Newmark Civil Engn Lab 3129 E, 205 N Mathews Ave, Urbana, IL 61801 USA
[2] Univ Illinois, Newmark Civil Engn Lab 3103, 205 N Mathews Ave, Urbana, IL 61801 USA
[3] Prince Mohammad Bin Fahd Univ, Mech Engn Dept, Dhahran, Saudi Arabia
[4] Univ Illinois, Newmark Civil Engn Lab 2112, 205 N Mathews Ave, Urbana, IL 61801 USA
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 2018年 / 85卷 / 09期
关键词
DIFFERENCE-PSEUDOPOTENTIAL METHOD; DENSITY-FUNCTIONAL THEORY; COMPUTATIONAL NANOMECHANICS; FRAMEWORK; MODEL;
D O I
10.1115/1.4040454
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents B-splines and nonuniform rational B-splines (NURBS)-based finite element method for self-consistent solution of the Schrodinger wave equation (SWE). The new equilibrium position of the atoms is determined as a function of evolving stretching of the underlying primitive lattice vectors and it gets reflected via the evolving effective potential that is employed in the SWE. The nonlinear SWE is solved in a self-consistent fashion (SCF) wherein a Poisson problem that models the Hartree and local potentials is solved as a function of the electron charge density. The complex-valued generalized eigenvalue problem arising from SWE yields evolving band gaps that result in changing electronic properties of the semiconductor materials. The method is applied to indium, silicon, and germanium that are commonly used semiconductor materials. It is then applied to the material system comprised of silicon layer on silicon-germanium buffer to show the range of application of the method.
引用
收藏
页数:11
相关论文
共 43 条
[1]   Coupling Methods for Continuum Model with Molecular Model [J].
Belytschko, T. ;
Xiao, S. P. .
INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2003, 1 (01) :115-126
[2]   FINITE-DIFFERENCE-PSEUDOPOTENTIAL METHOD - ELECTRONIC-STRUCTURE CALCULATIONS WITHOUT A BASIS [J].
CHELIKOWSKY, JR ;
TROULLIER, N ;
SAAD, Y .
PHYSICAL REVIEW LETTERS, 1994, 72 (08) :1240-1243
[3]   HIGHER-ORDER FINITE-DIFFERENCE PSEUDOPOTENTIAL METHOD - AN APPLICATION TO DIATOMIC-MOLECULES [J].
CHELIKOWSKY, JR ;
TROULLIER, N ;
WU, K ;
SAAD, Y .
PHYSICAL REVIEW B, 1994, 50 (16) :11355-11364
[4]   Density functional theory - A powerful tool for theoretical studies in coordination chemistry [J].
Chermette, H .
COORDINATION CHEMISTRY REVIEWS, 1998, 178 :699-721
[5]   Stress calculation in atomistic simulations of perfect and imperfect solids [J].
Cormier, J ;
Rickman, JM ;
Delph, TJ .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (01) :99-104
[6]   Quasi-continuum orbital-free density-functional theory: A route to multi-million atom non-periodic DFT calculation [J].
Gavini, Vikram ;
Bhattacharya, Kaushik ;
Ortiz, Michael .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2007, 55 (04) :697-718
[7]   Non-periodic finite-element formulation of orbital-free density functional theory [J].
Gavini, Vikram ;
Knap, Jaroslaw ;
Bhattacharya, Kaushik ;
Ortiz, Michael .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2007, 55 (04) :669-696
[8]   A deformation gradient tensor and strain tensors for atomistic simulations [J].
Gullett, P. M. ;
Horstemeyer, M. F. ;
Baskes, M. I. ;
Fang, H. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2008, 16 (01)
[9]   Relativistic separable dual-space Gaussian pseudopotentials from H to Rn [J].
Hartwigsen, C ;
Goedecker, S ;
Hutter, J .
PHYSICAL REVIEW B, 1998, 58 (07) :3641-3662
[10]   Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis [J].
Hiemstra, Rene R. ;
Calabro, Francesco ;
Schillinger, Dominik ;
Hughes, Thomas J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 316 :966-1004