Fabrication of Photothermally Responsive Nanocomposite Hydrogel through 3D Printing

被引:31
|
作者
Zhang, Lun [1 ]
Zhang, Xueqian [1 ]
Li, Lei [2 ]
Liu, Yinghao [1 ]
Wang, Dong [1 ]
Xu, Liqiang [1 ]
Bao, Jianjun [1 ]
Zhang, Aimin [1 ]
机构
[1] Sichuan Univ, State Key Lab Polymers Mat Engn China, Polymer Res Inst, Chengdu 610065, Sichuan, Peoples R China
[2] Beijing Yanshan Petrochem High Tech Co Ltd, Beijing 102500, Peoples R China
关键词
3D printing; actuator; near-infrared light; poly(N-isopropyl acrylamide); graphene oxide hydrogel; ultraviolet light polymerization; SHAPE-MEMORY; GRAPHENE OXIDE; COMPOSITES; TRANSITION; ELASTOMER; POLYMERS; ROBUST;
D O I
10.1002/mame.201900718
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The responsive hydrogels have received great attention in many fields. However, the molding method and response mode of such hydrogels are criticized when it comes to real applications. In this work, a novel class of poly(N-isopropyl acrylamide)/graphene oxide (PNIPAm/GO) nanocomposite hydrogel through self-assembly three-dimensional (3D) printing via ultraviolet light polymerization. The precursor is ordinarily constituted by NIPAm monomer, crosslinker, and water mixed with a photoinitiator, besides the introduction of nanoclay adjusts the shear thinning properties to an optimal level, which is important for the 3D printing precision. Then, the graphite oxide as infrared light absorber endows the hydrogel fast photothermal excited responsivity instead of conventional temperature response. The shrinkage and swelling of the composite hydrogel can be controlled by turning the near-infrared light on or off. Meanwhile, the reversible behavior of as-prepared hydrogel is easily regulated by altering the content of GO and illumination time of near-infrared light. Additionally, a round tube is obtained based on the as-prepared hydrogel, which can be driven to get a pencil, indicating their potential applications in actuator and other functional program.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] 3D Printing Super Strong Hydrogel for Artificial Meniscus
    Zhang, Zimeng
    Liu, Ruochen
    Zepeda, Herman
    Zeng, Li
    Qiu, Jingjing
    Wang, Shiren
    ACS APPLIED POLYMER MATERIALS, 2019, 1 (08) : 2023 - 2032
  • [42] 3D Printing of Hydrogel Polysaccharides for Biomedical Applications: A Review
    Aghajani, Mohammad
    Garshasbi, Hamid Reza
    Naghib, Seyed Morteza
    Mozafari, M. R.
    BIOMEDICINES, 2025, 13 (03)
  • [43] Emerging Applications of Smart Hydrogel Nanocomposites in 3D Printing
    Heidari, Mohammad
    Shahi, Farangis
    Afshar, Hana
    Nobre, Marcos A. L.
    Dawi, Elmuez A.
    Khonakdar, Hossein Ali
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2024, 35 (12)
  • [44] 3D printing using polyampholyte hydrogel with reversible behavior
    Na, Yang Ho
    Hwang, Jung Min
    Chung, Jae Woo
    Han, Youngbae
    POLYMER INTERNATIONAL, 2021, 70 (10) : 1486 - 1494
  • [45] Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation
    Shang, Wanfeng
    Liu, Yanting
    Wan, Wenfeng
    Hu, Chengzhi
    Liu, Zeyang
    Wong, Chin To
    Fukuda, Toshio
    Shen, Yajing
    BIOFABRICATION, 2017, 9 (02)
  • [46] 3D Printing of Hydrogel-Based Biocompatible Materials
    Preobrazhenskii, I. I.
    Putlyaev, V. I.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2022, 95 (06) : 775 - 788
  • [47] Use of 3D printing in astronomical mirror fabrication
    Roulet, Melanie
    Atkins, Carolyn
    Hugot, Emmanuel
    Snell, Rob
    van de Vorst, Bart
    Morris, Katherine
    Marcos, Michel
    Todd, Iain
    Miller, Christopher
    Dufils, Joris
    Farkas, Szigfrid
    Mezo, Gyorgy
    Tenegi, Fabio
    Vega-Moreno, Afrodisio
    Schnelter, Hermine
    3D PRINTED OPTICS AND ADDITIVE PHOTONIC MANUFACTURING II, 2020, 11349
  • [48] 3D Printing of Electrically Responsive PVC Gel Actuators
    Wang, Zijun
    Wang, Yang
    Wang, Zhijian
    He, Qiguang
    Li, Chenghai
    Cai, Shengqiang
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (20) : 24164 - 24172
  • [49] Investigation of polylactide and carbon nanocomposite filament for 3D printing
    Akshay Potnuru
    Yonas Tadesse
    Progress in Additive Manufacturing, 2019, 4 : 23 - 41
  • [50] Fabrication of Multiple-Layered Hydrogel Scaffolds with Elaborate Structure and Good Mechanical Properties via 3D Printing and Ionic Reinforcement
    Wang, Xiaotong
    Wei, Changzheng
    Cao, Bin
    Jiang, Lixia
    Hou, Yongtai
    Chang, Jiang
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (21) : 18338 - 18350