Water desorption in Kelvin-probe force microscopy: a generic model

被引:3
|
作者
Mesquida, P. [1 ,2 ]
Kohl, D. [1 ]
Bansode, S. [3 ]
Duer, M. [3 ]
Schitter, G. [1 ]
机构
[1] TU Wien, Automat & Control Inst ACIN, Gusshausstr 27-29, A-1040 Vienna, Austria
[2] Kings Coll London, Dept Phys, London WC2R 2LS, England
[3] Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England
基金
英国工程与自然科学研究理事会;
关键词
Kelvin-probe force microscopy; atomic force microscopy; humidity; surface charge; decay; LABEL-FREE; FILMS;
D O I
10.1088/1361-6528/aae413
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanoparticles or similar, nanoscale objects such as proteins or biological fibrils usually have to be deposited from aqueous suspension onto a solid support surface for further characterization by atomic force microscopy (AFM) and related methods such as Kelvin-probe force microscopy (KFM). Here we show, on the examples of functionalized nanoparticles and collagen fibrils, that water desorption after sample preparation affects their electrostatic potential determined by KFM in a predictable manner. We explain this effect with a simple, analytical model based on the capacitance of the partially dielectric-filled tip-sample system. We also propose practical measures to avoid false interpretation of electrical AFM-based experiments. As the phenomenon is very generic it may have significant implications in the application of AFM to nanoparticles and other nanostructures including biological ones.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Interlayer Resistance and Edge-Specific Charging in Layered Molecular Crystals Revealed by Kelvin-Probe Force Microscopy
    Yamagishi, Yuji
    Noda, Kei
    Kobayashi, Kei
    Yamada, Hirofumi
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (06): : 3006 - 3011
  • [22] Calibrated Kelvin-probe force microscopy of 2D materials using Pt-coated probes
    Castanon, Elisa G.
    Fernandez Scarioni, Alexander
    Schumacher, Hans W.
    Spencer, Steve
    Perry, Richard
    Vicary, James A.
    Clifford, Charles A.
    Corte-Leon, Hector
    JOURNAL OF PHYSICS COMMUNICATIONS, 2020, 4 (09): : 1 - 13
  • [23] Pulsed Force Kelvin Probe Force Microscopy-A New Type of Kelvin Probe Force Microscopy under Ambient Conditions
    Zahmatkeshsaredorahi, Amirhossein
    Jakob, Devon S.
    Xu, Xiaoji G.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (24): : 9813 - 9827
  • [24] A Kelvin probe force microscopy study of hydrogen insertion and desorption into 2024 aluminum alloy
    Lafouresse, Manon Chloe
    de Bonfils-Lahovary, Marie-Laetitia
    Charvillat, Cedric
    Oger, Loic
    Laffont, Lydia
    Blanc, Christine
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 722 : 760 - 766
  • [25] AC Kelvin Probe Force Microscopy Enables Charge Mapping in Water
    Hackl, Thomas
    Schitter, Georg
    Mesquida, Patrick
    ACS NANO, 2022, 16 (11) : 17982 - 17990
  • [26] Potential shielding by the surface water layer in Kelvin probe force microscopy
    Sugimura, H
    Ishida, Y
    Hayashi, K
    Takai, O
    Nakagiri, N
    APPLIED PHYSICS LETTERS, 2002, 80 (08) : 1459 - 1461
  • [27] New Insights on Atomic-Resolution Frequency-Modulation Kelvin-Probe Force-Microscopy Imaging of Semiconductors
    Sadewasser, Sascha
    Jelinek, Pavel
    Fang, Chung-Kai
    Custance, Oscar
    Yamada, Yusaku
    Sugimoto, Yoshiaki
    Abe, Masayuki
    Morita, Seizo
    PHYSICAL REVIEW LETTERS, 2009, 103 (26)
  • [28] Kelvin probe force microscopy in liquid using electrochemical force microscopy
    Collins, Liam
    Jesse, Stephen
    Kilpatrick, Jason I.
    Tselev, Alexander
    Okatan, M. Baris
    Kalinin, Sergei V.
    Rodriguez, Brian J.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 : 201 - 214
  • [29] Kelvin probe force microscopy of beveled semiconductors
    Ferguson, RS
    Fobelets, K
    Cohen, LF
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (05): : 2133 - 2136
  • [30] Kelvin probe force microscopy of molecular surfaces
    Fujihira, M
    ANNUAL REVIEW OF MATERIALS SCIENCE, 1999, 29 : 353 - 380