Hexagonal-shaped monolayer-bilayer quantum disks in graphene: A tight-binding approach

被引:14
|
作者
da Costa, D. R. [1 ,2 ]
Zarenia, M. [2 ]
Chaves, Andrey [1 ,3 ]
Pereira, J. M., Jr. [1 ]
Farias, G. A. [1 ]
Peeters, F. M. [1 ,2 ]
机构
[1] Univ Fed Ceara, Dept Fis, BR-60455900 Fortaleza, Ceara, Brazil
[2] Univ Antwerp, Dept Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
[3] Columbia Univ, Dept Chem, 3000 Broadway, New York, NY 10027 USA
关键词
NANOPERFORATED GRAPHENE; DOTS; CONFINEMENT; STATES;
D O I
10.1103/PhysRevB.94.035415
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using the tight-binding approach, we investigate confined states in two different hybrid monolayer-bilayer systems: (i) a hexagonal monolayer area surrounded by bilayer graphene in the presence of a perpendicularly applied electric field and (ii) a hexagonal bilayer graphene dot surrounded by monolayer graphene. The dependence of the energy levels on dot size and external magnetic field is calculated. We find that the energy spectrum for quantum dots with zigzag edges consists of states inside the gap which range from dot-localized states, edge states, to mixed states coexisting together, whereas for dots with armchair edges, only dot-localized states are observed.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Tight-binding model for electronic structure of hexagonal boron phosphide monolayer and bilayer
    Wang, Ying
    Huang, Changbao
    Li, Dong
    Li, Ping
    Yu, Jiangying
    Zhang, Yuzhong
    Xu, Jinrong
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (28)
  • [2] Energy levels of hybrid monolayer-bilayer graphene quantum dots
    Mirzakhani, M.
    Zarenia, M.
    Ketabi, S. A.
    da Costa, D. R.
    Peeters, F. M.
    PHYSICAL REVIEW B, 2016, 93 (16)
  • [3] Quantum transport properties of AB bilayer graphene via tight-binding approach with NEGF formalisms
    Poobalan, Prashanth
    Wong, Yuki
    Alias, Nurul Ezaila
    Isaak, Suhaila
    Tan, Michael Loong Peng
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2024, 130 (08):
  • [4] Quantum Hall Transport across Monolayer-Bilayer Boundary in Graphene
    Tsukuda, A.
    Okunaga, H.
    Nakahara, D.
    Uchida, K.
    Konoike, T.
    Osada, T.
    HORIBA INTERNATIONAL CONFERENCE: THE 19TH INTERNATIONAL CONFERENCE ON THE APPLICATION OF HIGH MAGNETIC FIELDS IN SEMICONDUCTOR PHYSICS AND NANOTECHNOLOGY, 2011, 334
  • [5] Quantum Hall effect in monolayer-bilayer graphene planar junctions
    Tian, Jifa
    Jiang, Yongjin
    Childres, Isaac
    Cao, Helin
    Hu, Jiangping
    Chen, Yong P.
    PHYSICAL REVIEW B, 2013, 88 (12)
  • [6] Accurate tight-binding models for the π bands of bilayer graphene
    Jung, Jeil
    MacDonald, Allan H.
    PHYSICAL REVIEW B, 2014, 89 (03):
  • [7] Tight-binding study of bilayer graphene Josephson junctions
    Munoz, W. A.
    Covaci, L.
    Peeters, F. M.
    PHYSICAL REVIEW B, 2012, 86 (18):
  • [8] Nonlinear optical response of doped monolayer and bilayer graphene: Length gauge tight-binding model
    Hipolito, F.
    Taghizadeh, Alireza
    Pedersen, T. G.
    PHYSICAL REVIEW B, 2018, 98 (20)
  • [9] ELECTRON TRANSMISSION THROUGH GRAPHENE MONOLAYER-BILAYER JUNCTION: AN ANALYTICAL APPROACH
    Ruseckas, J.
    Mekys, A.
    Juzeliunas, G.
    Zozoulenko, I. V.
    LITHUANIAN JOURNAL OF PHYSICS, 2012, 52 (01): : 70 - 80
  • [10] Hexagonal-shaped graphene quantum plasmonic nano-antenna sensor
    S. Kavitha
    Ravi Shankar Saxena
    Ashish Singh
    Kamakshi Kumari
    Mohammed Aneesh
    Scientific Reports, 13