Geometric Nelder-Mead Algorithm for the Permutation Representation

被引:0
作者
Moraglio, Alberto [1 ]
Togelius, Julian [2 ]
机构
[1] Univ Kent, Sch Comp, Canterbury, Kent, England
[2] IT Univ Copenhagen, Ctr Comp Games Res, Copenhagen, Denmark
来源
2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2010年
关键词
SIMPLEX-METHOD;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Nelder-Mead Algorithm (NMA) is an almost half-century old method for numerical optimization, and it is a close relative of Particle Swarm Optimization (PSO) and Differential Evolution (DE). In recent work, PSO, DE and NMA have been generalized using a formal geometric framework that treats solution representations in a uniform way. These formal algorithms can be used as templates to derive rigorously specific PSO, DE and NMA for both continuous and combinatorial spaces retaining the same geometric interpretation of the search dynamics of the original algorithms across representations. In previous work, a geometric NMA was derived for the binary string representation. In this paper, we advance this line of research and derive formally a specific NMA for the permutation representation. The result is a Nelder-Mead Algorithm searching the space of permutations by acting directly on this representation. We present initial experimental results for the new algorithm on the Traveling Salesman Problem. The peculiar geometry of the permutation space seems to affect the performance of the geometric NMA that does not perform as well as the NMA for the binary string representation. We present a discussion about the nature of permutation spaces that seeks to explain this phenomenon. Further study is required to understand if this is a fundamental limitation of the application of the geometric NMA to permutation spaces.
引用
收藏
页数:8
相关论文
共 20 条
  • [1] Low dimensional simplex evolution - A hybrid heuristic for global optimization
    Changtong Luo
    Bo Yu
    [J]. SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 2, PROCEEDINGS, 2007, : 470 - +
  • [2] Clerc M, 2004, STUD FUZZ SOFT COMP, V141, P219
  • [3] Kennedy J, 1997, IEEE SYS MAN CYBERN, P4104, DOI 10.1109/ICSMC.1997.637339
  • [4] Kennedy J. F., 2001, Swarm intelligence
  • [5] MORAGLIO A, 2010, P 13 EUR C GEN PROGR
  • [6] Moraglio A., 2007, Towards a geometric unification of evolutionary algorithms
  • [7] MORAGLIO A, 2008, J ARTIFICIAL EVOLUTI
  • [8] MORAGLIO A, 2009, P 11 ANN C GEN EV CO, P1705
  • [9] Moraglio A, 2007, LECT NOTES COMPUT SC, V4445, P125
  • [10] Moraglio A, 2010, IEEE C EVOL COMPUTAT