p-laplacian equation;
nonlocal source;
global existence;
blow-up;
D O I:
10.1016/S0898-1221(03)90188-X
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper deals with a p-Laplacian equation u(t) - div(\delu\(p-2)delu) = integral(Omega) u(q) (x, t) dx with null Dirichlet boundary conditions in a bounded domain Omega subset of R-N, where p > 2, q greater than or equal to 1. Under appropriate hypotheses, we-establish local theory of the solution and obtain that the solution either exists globally or blows up in finite time. (C) 2003 Elsevier Ltd. All rights reserved.
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R ChinaNortheast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
Wang, Ru
Chang, Xiaojun
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R ChinaNortheast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
机构:
Nanjing Normal Univ, Inst Math, Sch Math & Comp Sci, Jiangsu Nanjing 210097, Peoples R China
Tianshui Normal Univ, Sch Math & Stat, Gansu Tianshui 741001, Peoples R ChinaNanjing Normal Univ, Inst Math, Sch Math & Comp Sci, Jiangsu Nanjing 210097, Peoples R China
Peng, Congming
Yang, Zuodong
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Inst Math, Sch Math & Comp Sci, Jiangsu Nanjing 210097, Peoples R China
Nanjing Normal Univ, Coll Zhongbei, Jiangsu Nanjing 210046, Peoples R ChinaNanjing Normal Univ, Inst Math, Sch Math & Comp Sci, Jiangsu Nanjing 210097, Peoples R China