Global and blow-up solutions to a p-laplacian equation with nonlocal source

被引:0
|
作者
Li, FC [1 ]
Xie, CH [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
p-laplacian equation; nonlocal source; global existence; blow-up;
D O I
10.1016/S0898-1221(03)90188-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a p-Laplacian equation u(t) - div(\delu\(p-2)delu) = integral(Omega) u(q) (x, t) dx with null Dirichlet boundary conditions in a bounded domain Omega subset of R-N, where p > 2, q greater than or equal to 1. Under appropriate hypotheses, we-establish local theory of the solution and obtain that the solution either exists globally or blows up in finite time. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1525 / 1533
页数:9
相关论文
共 50 条