Global and blow-up solutions to a p-laplacian equation with nonlocal source

被引:0
作者
Li, FC [1 ]
Xie, CH [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
p-laplacian equation; nonlocal source; global existence; blow-up;
D O I
10.1016/S0898-1221(03)90188-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a p-Laplacian equation u(t) - div(\delu\(p-2)delu) = integral(Omega) u(q) (x, t) dx with null Dirichlet boundary conditions in a bounded domain Omega subset of R-N, where p > 2, q greater than or equal to 1. Under appropriate hypotheses, we-establish local theory of the solution and obtain that the solution either exists globally or blows up in finite time. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1525 / 1533
页数:9
相关论文
共 17 条
[1]  
ALIKAKOS ND, 1983, J MATH PURE APPL, V62, P253
[2]  
Bidaut-Véron MF, 2001, ASYMPTOTIC ANAL, V28, P115
[3]  
CANDAM JM, 1992, J MATH ANAL APPL, V169, P313
[4]  
DIAZ JI, 1985, NONLINEAR PARTIAL DI
[5]  
DIBENDETTO E, 1993, DEGENERATE PARABOLID
[6]   LOCAL EXISTENCE OF GENERAL NONLINEAR PARABOLIC-SYSTEMS [J].
FILO, J ;
KACUR, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (11) :1597-1618
[7]  
Filo J., 1994, PANAMERICAN MATH J, V4, P1
[8]   ASYMPTOTIC STABILITY AND BLOWING UP OF SOLUTIONS OF SOME NONLINEAR EQUATIONS [J].
ISHII, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 26 (02) :291-319
[9]   NONEXISTENCE THEOREMS FOR HEAT EQUATION WITH NONLINEAR BOUNDARY-CONDITIONS AND FOR POROUS-MEDIUM EQUATION BACKWARD IN TIME [J].
LEVINE, HA ;
PAYNE, LE .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 16 (02) :319-334
[10]   NONEXISTENCE OF GLOBAL WEAK SOLUTIONS FOR CLASSES OF NONLINEAR-WAVE AND PARABOLIC EQUATIONS [J].
LEVINE, HA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 55 (02) :329-334