MIXTURES OF FACTOR ANALYZERS AND DEEP MIXTURES OF FACTOR ANALYZERS DIMENSIONALITY REDUCTION ALGORITHMS FOR HYPERSPECTRAL IMAGES CLASSIFICATION

被引:0
|
作者
Zhao, Bin [1 ]
Ulfarsson, Magnus O. [1 ]
Sveinsson, Johannes R. [1 ]
Chanussot, Jocelyn [1 ,2 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, Reykjavik, Iceland
[2] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, F-38000 Grenoble, France
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
关键词
Dimensionality reduction; hyperspectral image; factor analysis; mixtures of factor analyzers; deep mixture of factor analyzers; classification;
D O I
10.1109/igarss.2019.8898002
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents two dimensionality reduction methods, mixtures of factor analyzers (MFA) and deep mixtures of factor analyzers (DMFA), for classification of hyperspectral image (HSI). DMFA consists of two layers of MFA and can extract more information from HSI than MFA can. The performance of MFA and DMFA dimensionality reduction methods for classification using real HSI is evaluated in this paper. Experimental results are compared to conventional methods like probabilistic principal component analysis and factor analysis and it is shown that MFA and DMFA give better results.
引用
收藏
页码:891 / 894
页数:4
相关论文
共 50 条
  • [31] Mixtures of Factor Analyzers with Common Factor Loadings: Applications to the Clustering and Visualization of High-Dimensional Data
    Baek, Jangsun
    McLachlan, Geoffrey J.
    Flack, Lloyd K.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (07) : 1298 - 1309
  • [32] Dimensionally Reduced Model-Based Clustering Through Mixtures of Factor Mixture Analyzers
    Cinzia Viroli
    Journal of Classification, 2010, 27 : 363 - 388
  • [33] Mixtures of common t-factor analyzers for clustering high-dimensional microarray data
    Baek, Jangsun
    McLachlan, Geoffrey J.
    BIOINFORMATICS, 2011, 27 (09) : 1269 - 1276
  • [34] A bootstrap-augmented alternating expectation-conditional maximization algorithm for mixtures of factor analyzers
    Shreeves, Phillip
    Andrews, Jeffrey L.
    STAT, 2019, 8 (01):
  • [35] ETR: Enhancing transformation reduction for reducing dimensionality and classification complexity in hyperspectral images
    AL-Alimi, Dalal
    Cai, Zhihua
    Al-qaness, Mohammed A. A.
    Alawamy, Eman Ahmed
    Alalimi, Ahamed
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [36] Clustering and classification via cluster-weighted factor analyzers
    Subedi, Sanjeena
    Punzo, Antonio
    Ingrassia, Salvatore
    McNicholas, Paul D.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2013, 7 (01) : 5 - 40
  • [37] Clustering and classification via cluster-weighted factor analyzers
    Sanjeena Subedi
    Antonio Punzo
    Salvatore Ingrassia
    Paul D. McNicholas
    Advances in Data Analysis and Classification, 2013, 7 : 5 - 40
  • [38] Fast dimensionality reduction and classification of hyperspectral images with extreme learning machines
    Juan Mario Haut
    Mercedes Eugenia Paoletti
    Javier Plaza
    Antonio Plaza
    Journal of Real-Time Image Processing, 2018, 15 : 439 - 462
  • [39] Deep Fully Convolutional Embedding Networks for Hyperspectral Images Dimensionality Reduction
    Li, Na
    Zhou, Deyun
    Shi, Jiao
    Zhang, Mingyang
    Wu, Tao
    Gong, Maoguo
    REMOTE SENSING, 2021, 13 (04) : 1 - 24
  • [40] Fast dimensionality reduction and classification of hyperspectral images with extreme learning machines
    Mario Haut, Juan
    Eugenia Paoletti, Mercedes
    Plaza, Javier
    Plaza, Antonio
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2018, 15 (03) : 439 - 462