MIXTURES OF FACTOR ANALYZERS AND DEEP MIXTURES OF FACTOR ANALYZERS DIMENSIONALITY REDUCTION ALGORITHMS FOR HYPERSPECTRAL IMAGES CLASSIFICATION

被引:0
|
作者
Zhao, Bin [1 ]
Ulfarsson, Magnus O. [1 ]
Sveinsson, Johannes R. [1 ]
Chanussot, Jocelyn [1 ,2 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, Reykjavik, Iceland
[2] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, F-38000 Grenoble, France
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
关键词
Dimensionality reduction; hyperspectral image; factor analysis; mixtures of factor analyzers; deep mixture of factor analyzers; classification;
D O I
10.1109/igarss.2019.8898002
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents two dimensionality reduction methods, mixtures of factor analyzers (MFA) and deep mixtures of factor analyzers (DMFA), for classification of hyperspectral image (HSI). DMFA consists of two layers of MFA and can extract more information from HSI than MFA can. The performance of MFA and DMFA dimensionality reduction methods for classification using real HSI is evaluated in this paper. Experimental results are compared to conventional methods like probabilistic principal component analysis and factor analysis and it is shown that MFA and DMFA give better results.
引用
收藏
页码:891 / 894
页数:4
相关论文
共 50 条
  • [21] Mixtures of factor analyzers with covariates for modeling multiply censored dependent variables
    Wan-Lun Wang
    Luis M. Castro
    Wan-Chen Hsieh
    Tsung-I Lin
    Statistical Papers, 2021, 62 : 2119 - 2145
  • [22] Mixtures of Gaussian copula factor analyzers for clustering high dimensional data
    Zhang, Lili
    Baek, Jangsun
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (03) : 480 - 492
  • [23] Dimensionally Reduced Model-Based Clustering Through Mixtures of Factor Mixture Analyzers
    Viroli, Cinzia
    JOURNAL OF CLASSIFICATION, 2010, 27 (03) : 363 - 388
  • [24] Mixtures of modified t-factor analyzers for model-based clustering, classification, and discriminant analysis
    Andrews, Jeffrey L.
    McNicholas, Paul D.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1479 - 1486
  • [25] Robust clustering of multiply censored data via mixtures of t factor analyzers
    Wan-Lun Wang
    Tsung-I Lin
    TEST, 2022, 31 : 22 - 53
  • [26] Low-Rank Structured MMSE Channel Estimation with Mixtures of Factor Analyzers
    Fesl, Benedikt
    Turan, Nurettin
    Utschick, Wolfgang
    FIFTY-SEVENTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, IEEECONF, 2023, : 375 - 380
  • [27] Flexible clustering via extended mixtures of common t-factor analyzers
    Wang, Wan-Lun
    Lin, Tsung-I
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2017, 101 (03) : 227 - 252
  • [28] Flexible clustering via extended mixtures of common t-factor analyzers
    Wan-Lun Wang
    Tsung-I Lin
    AStA Advances in Statistical Analysis, 2017, 101 : 227 - 252
  • [29] Robust clustering of multiply censored data via mixtures of t factor analyzers
    Wang, Wan-Lun
    Lin, Tsung-, I
    TEST, 2022, 31 (01) : 22 - 53
  • [30] Model-based clustering of censored data via mixtures of factor analyzers
    Wang, Wan-Lun
    Castro, Luis M.
    Lachos, Victor H.
    Lin, Tsung-I
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 140 (104-121) : 104 - 121